Project description:To further development of our gene expression approch to intracellular pathogenic bacterial controlling, we have employed castamized Neochlamydia S13 genomic microarray as a discovery platform to identy genes with the potential to inhibit Legionella growth into hoat amoebae , based on our data that the the amoebae haboring amoebal endosymbiont Neochlamydia S13 (an environmental chlamydia) could evade Legionella infection.
Project description:Interventions: Group 1: Surgical patients undergoing surgery for colorectal cancer: immunophenotyping by PBMCs and metagenomic analyses from stool, mucosa, and saliva samples perioperatively and during oncologic follow-up.
Group 2: oncologic patients with chemo- / immune therapy without recent surgery:
Immunophenotyping by PBMCs and metagenomic analyses from stool, mucosa and saliva samples during therapy and oncological follow-up.
Group 3: healthy controls:
Immunophenotyping by PBMCs and metagenomic analyses from stool, mucosa, and saliva samples at the time of screening colonoscopy.
Primary outcome(s): Difference in the differential abundance of the colonic mucosa of patients with CRC vs. healthy controls for evaluation as diagnostic biomarkers based on metagenomic analyzes (microbial pattern)
Study Design: Allocation: ; Masking: ; Control: ; Assignment: ; Study design purpose: diagnostic
Project description:Legionella pneumophila are important opportunistic pathogens for which environmental reservoirs such as protists are crucial for the infection of humans. Free-living amoebae are considered key hosts providing nutrients and shelter for highly efficient intracellular proliferation of L. pneumophila, which eventually leads to lysis of the amoeba host cell. Yet, the significance of other bacterial players for L. pneumophila ecology is poorly understood. In this study we used a ubiquitous amoeba and their bacterial endosymbiont to investigate the impact of this common association on L. pneumophila infection. We demonstrate that Acanthamoeba castellanii harboring the chlamydial symbiont Protochlamydia amoebophila were able to erase L. pneumophila and, in contrast to symbiont-free amoebae, survived the infection and were able to resume growth. Environmental amoeba isolates harboring P. amoebophila were equally well-protected, and fresh environmental isolates of L. pneumophila were equally well-erased, suggesting ecological relevance of this symbiont-mediated protection. We further show that protection was not mediated by impaired L. pneumophila uptake. Instead, we observed reduced virulence of L. pneumophila released from symbiont-containing amoebae that is strongly supported by transcriptome data. Interference with transition to the transmissive phase is thus likely the basis for this protection. Finally, our data indicate that the defensive response of amoebae harboring P. amoebophila leaves the amoebae with superior fitness reminiscent of immunological memory. Given that mutualistic associations between bacteria and amoebae are widely distributed, P. amoebophila and potentially other amoeba endosymbionts could be key elements in shaping environmental survival, abundance and virulence of this important pathogen thereby affecting frequency of human infection.
Project description:Evaluation of short-read-only, long-read-only, and hybrid assembly approaches on metagenomic samples demonstrating how they affect gene and protein prediction which is relevant for downstream functional analyses. For a human gut microbiome sample, we use complementary metatranscriptomic, and metaproteomic data to evaluate the metagenomic-based protein predictions.
Project description:Next-Generation-Sequencing (NGS) technologies have led to important improvement in the detection of new or unrecognized infective agents, related to infectious diseases. In this context, NGS high-throughput technology can be used to achieve a comprehensive and unbiased sequencing of the nucleic acids present in a clinical sample (i.e. tissues). Metagenomic shotgun sequencing has emerged as powerful high-throughput approaches to analyze and survey microbial composition in the field of infectious diseases. By directly sequencing millions of nucleic acid molecules in a sample and matching the sequences to those available in databases, pathogens of an infectious disease can be inferred. Despite the large amount of metagenomic shotgun data produced, there is a lack of a comprehensive and easy-use pipeline for data analysis that avoid annoying and complicated bioinformatics steps. Here we present HOME-BIO, a modular and exhaustive pipeline for analysis of biological entity estimation, specific designed for shotgun sequenced clinical samples. HOME-BIO analysis provides comprehensive taxonomy classification by querying different source database and carry out main steps in metagenomic investigation. HOME-BIO is a powerful tool in the hand of biologist without computational experience, which are focused on metagenomic analysis. Its easy-to-use intrinsic characteristic allows users to simply import raw sequenced reads file and obtain taxonomy profile of their samples.
Project description:Next-Generation-Sequencing (NGS) technologies have led to important improvement in the detection of new or unrecognized infective agents, related to infectious diseases. In this context, NGS high-throughput technology can be used to achieve a comprehensive and unbiased sequencing of the nucleic acids present in a clinical sample (i.e. tissues). Metagenomic shotgun sequencing has emerged as powerful high-throughput approaches to analyze and survey microbial composition in the field of infectious diseases. By directly sequencing millions of nucleic acid molecules in a sample and matching the sequences to those available in databases, pathogens of an infectious disease can be inferred. Despite the large amount of metagenomic shotgun data produced, there is a lack of a comprehensive and easy-use pipeline for data analysis that avoid annoying and complicated bioinformatics steps. Here we present HOME-BIO, a modular and exhaustive pipeline for analysis of biological entity estimation, specific designed for shotgun sequenced clinical samples. HOME-BIO analysis provides comprehensive taxonomy classification by querying different source database and carry out main steps in metagenomic investigation. HOME-BIO is a powerful tool in the hand of biologist without computational experience, which are focused on metagenomic analysis. Its easy-to-use intrinsic characteristic allows users to simply import raw sequenced reads file and obtain taxonomy profile of their samples.
Project description:To investigate the metabolic mechanisms of laryngeal cancer. We then performed gene expression profiling analysis using data obtained from ten tumor tissue samples and ten nontumor tissue samples.