Project description:Modification of Gene Expression of the Small Airway Epithelium in Response to Cigarette Smoking The earliest morphologic evidence of changes in the airways associated with chronic cigarette smoking is in the small airways. To help understand how smoking modifies small airway structure and function, we developed a strategy using fiberoptic bronchoscopy and brushing to sample the human small airway (10th-12th order) bronchial epithelium to assess gene expression (HG-133 Plus 2.0 array) in phenotypically normal smokers (n=10, 33 ± 7 pack-yr) compared to matched non-smokers (n=12). Even though the smokers were phenotypically normal, analysis of the small airway epithelium of the smokers compared to the non-smokers demonstrated up- and -down-regulation of genes in multiple categories relevant to the pathogenesis of chronic obstructive lung disease (COPD), including genes coding for cytokines/innate immunity, apoptosis, mucin, response to oxidants and xenobiotics, and general cellular processes. In the context that COPD starts in the small airways, these gene expression changes in the small airway epithelium in phenotypically normal smokers are candidates for the development of therapeutic strategies to prevent the onset of COPD. Keywords: smokers vs non-smokers
Project description:The earliest morphologic evidence of changes in the airways associated with chronic cigarette smoking is in the small airways. To help understand how smoking modifies small airway structure and function, we developed a strategy using fiberoptic bronchoscopy and brushing to sample the human small airway (10th-12th order) bronchial epithelium to assess gene expression (Affymetrix HG-U133A array) in phenotypically normal smokers (n=6, 24 ± 4 pack-yr) compared to matched non-smokers (n=5). Compared to samples from the large (2nd to 3rd order) bronchi, the small airway samples had a higher proportion of ciliated cells, but less basal, undifferentiated, and secretory cells. The small, but not large, airway samples included Clara cells, a cell found only in the small airway epithelium, and the small, but not the large, airway epithelium expressed genes for the surfactant apoproteins. Despite the fact that the smokers were phenotypically normal, analysis of the small airway epithelium of the smokers compared to the non-smokers demonstrated up- and -down-regulation of genes in multiple categories relevant to the pathogenesis of chronic obstructive lung disease (COPD), including genes coding for cytokines/innate immunity, apoptosis, pro-fibrosis, mucin, responses to oxidants and xenobiotics, antiproteases and general cellular processes. In the context that COPD starts in the small airways, these changes in gene expression in the small airway epithelium in phenotypically normal smokers are candidates for the development of therapeutic strategies to prevent the onset of COPD. Experiment Overall Design: 6 smokers Experiment Overall Design: 5 non-smokers Experiment Overall Design: no replicates
Project description:The earliest morphologic evidence of changes in the airways associated with chronic cigarette smoking is in the small airways. To help understand how smoking modifies small airway structure and function, we developed a strategy using fiberoptic bronchoscopy and brushing to sample the human small airway (10th-12th order) bronchial epithelium to assess gene expression (Affymetrix HG-U133A array) in phenotypically normal smokers (n=6, 24 ± 4 pack-yr) compared to matched non-smokers (n=5). Compared to samples from the large (2nd to 3rd order) bronchi, the small airway samples had a higher proportion of ciliated cells, but less basal, undifferentiated, and secretory cells. The small, but not large, airway samples included Clara cells, a cell found only in the small airway epithelium, and the small, but not the large, airway epithelium expressed genes for the surfactant apoproteins. Despite the fact that the smokers were phenotypically normal, analysis of the small airway epithelium of the smokers compared to the non-smokers demonstrated up- and -down-regulation of genes in multiple categories relevant to the pathogenesis of chronic obstructive lung disease (COPD), including genes coding for cytokines/innate immunity, apoptosis, pro-fibrosis, mucin, responses to oxidants and xenobiotics, antiproteases and general cellular processes. In the context that COPD starts in the small airways, these changes in gene expression in the small airway epithelium in phenotypically normal smokers are candidates for the development of therapeutic strategies to prevent the onset of COPD. Keywords: response to cigarette smoking
Project description:Upregulation of Expression of the Ubiquitin Carboxyl Terminal Hydrolase L1 Gene in Human Airway Epithelium of Cigarette Smokers The microarray data deposited here is from 9 HG-U133 Plus 2.0 GeneChips, from 4 normal non-smokers, and 5 phenotypic normal smokers, all large airways. These data are part of a study aimed at understanding how cigarette smoking modifies neuroendocrine cells, in which microarray analysis with TaqMan confirmation was used to assess airway epithelial samples obtained by fiberoptic bronchoscopy from 81 individuals (normal nonsmokers, normal smokers, smokers with early COPD and smokers with established COPD). Of 11 genes considered to be neuroendocrine cell-specific, only ubiquitin C-terminal hydrolase L1(UCHL1), a member of the ubiquitin proteasome pathway, was consistently upregulated in smokers compared to nonsmokers. Up-regulation of UCHL1 at the protein level was observed with immunohistochemistry of bronchial biopsies of smokers compared to nonsmokers. Interestingly, however, while UCHL1 expression was present only in neuroendocrine cells of the airway epithelium in nonsmokers, UCHL1 expression was also expressed in ciliated epithelial cells in smokers, an intriguing observation in light of recent observations that ciliated cells can are capable of transdifferentiating to other airway epithelium. In the context that UCHL1 is involved in the degradation of unwanted, misfolded or damaged proteins within the cell and is overexpressed in >50% of lung cancers, its overexpression in chronic smokers may represent an early event in the complex transformation from normal epithelium to overt malignancy. Keywords: smokers vs non-smokers
Project description:Lectins are proteins present on cell surfaces or as shed extracellular proteins that function in innate immune defense as phagocytic receptors to recognize specific bacterial cell wall components. Based on the knowledge that cigarette smoking is associated with increased risk of bacterial infection, we hypothesized that cigarette smoking may modulate the expression of lectin genes in the airway epithelium. Affymetrix HG U133 Plus 2.0 microarrays were used to survey expression of lectin genes in large (3rd to 4th order bronchi) airway epithelium from 9 normal nonsmokers and 20 phenotypic normal smokers and small (10th to 12th order bronchi) airway epithelium from 13 normal nonsmokers and 20 phenotypic normal smokers. From the 72 lectin genes that were surveyed, there were no changes (>2-fold change, p<0.05) in gene expression in either large or small airway epithelium among normal smokers compared to nonsmokers except for a striking down regulation in both large and small airway epithelium of normal smokers of intelectin 1, a recently described lectin that participates in the innate immune response by recognizing and binding to galactofuranosyl residues in the cell walls of bacteria (large airway epithelium, p<0.003; small airway epithelium, p<0.002). TaqMan RT-PCR confirmed the observation that intelectin 1 was down-regulated in both large (p<0.05) and small airway epithelium (p<0.02) of normal smokers compared to normal nonsmokers. Immunohistochemistry assessment of biopsies of the large airway epithelium of normal nonsmokers demonstrated intelectin 1 was expressed in secretory cells, with qualitatively decreased expression in biopsies from normal smokers. Western analysis confirmed the decreased expression of intelectin 1 in airway epithelium of normal smokers compared to normal nonsmokers (p<0.02). Finally, compared to normal nonsmokers, intelectin 1 expression was decreased in small airway epithelium of smokers with early COPD (n= 13, p<0.001) and smokers with established COPD (n= 14, p<0.001), in a fashion similar to that of normal smokers. In the context that intelectin 1 is an epithelial molecule that likely plays a role in defense against bacteria, the down regulation of expression of intelectin 1 in response to cigarette smoking may contribute to the increase in susceptibility to infections observed in smokers, including those with COPD. Keywords: COPD
Project description:Upregulation of Expression of the Ubiquitin Carboxyl Terminal Hydrolase L1 Gene in Human Airway Epithelium of Cigarette Smokers; The microarray data deposited here is from 11 HG-U133A GeneChips, from 5 normal non-smokers and 6 phenotypic normal smokers, large airways. Samples from the small airways of these individuals have been obtained and analyzed using the HG-U133A GeneChip; the small airway samples are in GEO Accession Number GSE 3320, and the data analysis is described in Harvey, B-G; Heguy, A.; Leopold, P.L.; Carolan, B.; Ferris, B. and Crystal R.G. Modification of Gene Expression of the Small Airway Epithelium in Response to Cigarette Smoking. J. Mol. Med (in press). These data are part of a study aimed at understanding how cigarette smoking modifies neuroendocrine cells, in which microarray analysis with TaqMan confirmation was used to assess airway epithelial samples obtained by fiberoptic bronchoscopy from 81 individuals (normal nonsmokers, normal smokers, smokers with early COPD and smokers with established COPD). Of 11 genes considered to be neuroendocrine cell-specific, only ubiquitin C-terminal hydrolase L1(UCHL1), a member of the ubiquitin proteasome pathway, was consistently upregulated in smokers compared to nonsmokers. Up-regulation of UCHL1 at the protein level was observed with immunohistochemistry of bronchial biopsies of smokers compared to nonsmokers. Interestingly, however, while UCHL1 expression was present only in neuroendocrine cells of the airway epithelium in nonsmokers, UCHL1 expression was also expressed in ciliated epithelial cells in smokers, an intriguing observation in light of recent observations that ciliated cells can are capable of transdifferentiating to other airway epithelium. In the context that UCHL1 is involved in the degradation of unwanted, misfolded or damaged proteins within the cell and is overexpressed in >50% of lung cancers, its overexpression in chronic smokers may represent an early event in the complex transformation from normal epithelium to overt malignancy. Experiment Overall Design: comparison of gene expression in airway epithelial cells of the large airways of phenotypic normal smokers vs normal non-smokers
Project description:Lectins are proteins present on cell surfaces or as shed extracellular proteins that function in innate immune defense as phagocytic receptors to recognize specific bacterial cell wall components. Based on the knowledge that cigarette smoking is associated with increased risk of bacterial infection, we hypothesized that cigarette smoking may modulate the expression of lectin genes in the airway epithelium. Affymetrix HG U133 Plus 2.0 microarrays were used to survey expression of lectin genes in large (3rd to 4th order bronchi) airway epithelium from 9 normal nonsmokers and 20 phenotypic normal smokers and small (10th to 12th order bronchi) airway epithelium from 13 normal nonsmokers and 20 phenotypic normal smokers. From the 72 lectin genes that were surveyed, there were no changes (>2-fold change, p<0.05) in gene expression in either large or small airway epithelium among normal smokers compared to nonsmokers except for a striking down regulation in both large and small airway epithelium of normal smokers of intelectin 1, a recently described lectin that participates in the innate immune response by recognizing and binding to galactofuranosyl residues in the cell walls of bacteria (large airway epithelium, p<0.003; small airway epithelium, p<0.002). TaqMan RT-PCR confirmed the observation that intelectin 1 was down-regulated in both large (p<0.05) and small airway epithelium (p<0.02) of normal smokers compared to normal nonsmokers. Immunohistochemistry assessment of biopsies of the large airway epithelium of normal nonsmokers demonstrated intelectin 1 was expressed in secretory cells, with qualitatively decreased expression in biopsies from normal smokers. Western analysis confirmed the decreased expression of intelectin 1 in airway epithelium of normal smokers compared to normal nonsmokers (p<0.02). Finally, compared to normal nonsmokers, intelectin 1 expression was decreased in small airway epithelium of smokers with early COPD (n= 13, p<0.001) and smokers with established COPD (n= 14, p<0.001), in a fashion similar to that of normal smokers. In the context that intelectin 1 is an epithelial molecule that likely plays a role in defense against bacteria, the down regulation of expression of intelectin 1 in response to cigarette smoking may contribute to the increase in susceptibility to infections observed in smokers, including those with COPD. Keywords: COPD Comparison of gene expression in airway epithelial cells of normal non-smokers, phenotypic normal smokers, smokers with early COPD, and smokers with COPD.