Project description:Primary objectives: The primary objective is to investigate circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Primary endpoints: circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Project description:The study is intended to collect specimens to support the application of genome analysis technologies, including large-scale genome sequencing. This study will ultimately provide cancer researchers with specimens that they can use to develop comprehensive catalogs of genomic information on at least 50 types of human cancer. The study will create a resource available to the worldwide research community that could be used to identify and accelerate the development of new diagnostic and prognostic markers, new targets for pharmaceutical interventions, and new cancer prevention and treatment strategies. This study will be a competitive enrollment study conducted at multiple institutions.
Project description:Intervention type:DRUG. Intervention1:Huaier, Dose form:GRANULES, Route of administration:ORAL, intended dose regimen:20 to 60/day by either bulk or split for 3 months to extended term if necessary. Control intervention1:None.
Primary outcome(s): For mRNA libraries, focus on mRNA studies. Data analysis includes sequencing data processing and basic sequencing data quality control, prediction of new transcripts, differential expression analysis of genes. Gene Ontology (GO) and the KEGG pathway database are used for annotation and enrichment analysis of up-regulated genes and down-regulated genes.
For small RNA libraries, data analysis includes sequencing data process and sequencing data process QC, small RNA distribution across the genome, rRNA, tRNA, alignment with snRNA and snoRNA, construction of known miRNA expression pattern, prediction New miRNA and Study of their secondary structure Based on the expression pattern of miRNA, we perform not only GO / KEGG annotation and enrichment, but also different expression analysis.. Timepoint:RNA sequencing of 240 blood samples of 80 cases and its analysis, scheduled from June 30, 2022..
Project description:Lipomyces genome scale model based on the Lipomyces starkeyi NRRL-11557 genome.
Published in:
Genome-Scale Model Development and Genomic Sequencing of the Oleaginous Clade Lipomyces
Frontiers in Bioengineering and Biotechnology
Industrial Biotechnology
Volume 12 - 2024 | doi: 10.3389/fbioe.2024.1356551
2024-03-20 | MODEL2403190001 | BioModels
Project description:microRNAs of Pyrrhalta aenescens treated with DMSO and 20E
| PRJNA1166420 | ENA
Project description:microRNAs of Pyrrhalta aenescens treated with DMSO and JHA
| PRJNA1168396 | ENA
Project description:Transcriptome of Pyrrhalta aenescens treated with DMSO ,JHA and 20E
Project description:In order to more accurately discover the cause of drug resistance in tumor treatment, and to provide a new basis for precise treatment.
Therefore, based on the umbrella theory of precision medicine, we carried out this single-center, prospective, and observational study to include patients with liver metastases from colorectal cancer. By combining genome, transcriptome, and proteomic sequencing data, we established a basis for colorectal cancer liver Transfer the multi-omics data of the sample, describe the reason for the resistance of the first-line treatment, and search for new therapeutic targets.