Project description:The aim of the overall study was to investigate the development of immune competence in artificially reared dairy calves and in two breeds of naturally suckled beef calves over the first 168h of life. Dairy calves were fed 5% total body weight of colostrum, with beef calves monitored to ensure natural ingestion of colostrum. Blood samples were taken from all calves at 24h 48h 72h and 168h, and analysed for alterations to immunes genes.
Project description:This study evaluated the effect of enhanced dietary intake during the early life period on testes transcriptome in bull calves. Between 2-12 weeks of age bull alves were offered either a high (HI; n=15) or moderate (MOD; n=15) plane of nutrition, with diets designed to evoke growth rates of 1.0 and 0.5 kg/day, respectively. At 12 wk of age, testes parenchyma tissue samples were harvested from all calves and subsequently subjected to mRNAseq. Subsequent bioinformatics analyses revealed differential expression of genes invovled in cellular adhesion and immune function.
Project description:It has been established that enhanced early life nutrition progresses sexual development in the bull calf through neuroendocrine signalling via the hypothalamic-pituitary-testicular axis. However, the underlying molecular mechanisms regulating this process have not been fully elucidated. This study measured the impact of contrasting feeding regimes in the first 12 wk of life, known to impact age at puberty, on the proteomic landscape of the testes of bull calves. Holstein bull calves with a mean (±SD) bodyweight and age of 48.8 (± 5.3) kg and 17.5 (± 2.8) days, were designated to high (HI; n=10) or moderate (MOD; n=10) dietary groups, with diets designed to provoke growth rates of 1.0 and 0.5 kg/day, respectively. At 12 wk of age, all calves were euthanized, and testes parenchyma harvested. HI calves were heavier at slaughter (112.4 v 88.7 (2.98) kg, P<0.001), and had a greater average daily gain (ADG) of (0.88 v 0.58 kg, P<0.001). The turquoise network from the protein analyses contained the protein CDH13 which is involved in testes development. Gene ontology analysis of the turquoise network revealed enrichment of genes with functions related to cholesterol biosynthesis, IGF-1 signalling, insulin receptor/secretion signalling, androgen signalling and Sertoli cell junction signalling.
Project description:16S rRNA amplicon sequencing was used to characterize mucosa- and digesta-associated microbiota in the hindgut (cecum, colon and rectum) of pre-weaned dairy calves Targeted loci
Project description:Right ventricular (RV) failure is the major determinant of outcome in pulmonary hypertension (PH). Calves exposed to 2-wks environmental hypoxia develop severe PH and unlike rodents, chronic hypoxia-induced PH in this species can lead to right heart failure. We therefore sought to examine the molecular and structural changes in the RV in calves with hypoxia-induced PH, hypothesizing that we could identify mechanisms underlying compensated physiological function in the face of developing severe PH. Calves were exposed to 14d of hypobaric hypoxia (PB=430 mm Hg, equivalent to 4570m elevation, n=29) or ambient normoxia (1525m, n=25). Cardiopulmonary function was evaluated by right heart catheterization and pressure volume loops. Molecular and cellular determinants of RV remodeling were analyzed by cDNA microarrays, RealTime PCR, proteomics and immunochemistry. Hypoxic exposure induced robust PH, with increased RV contractile performance and preserved cardiac output, yet evidence of dysregulated RV-pulmonary artery mechanical coupling consistent with advanced PH. Analysis of gene expression revealed cellular processes associated with structural remodeling, cell signaling, and survival. We further identified specific clusters of gene expression associated with (i) hypertrophic gene expression and pro-survival mechanotransduction through YAP-TAZ signaling, (ii) ECM remodeling, (iii) inflammatory cell activation and (iv) angiogenesis. A potential transcriptomic signature of cardiac fibroblasts in RV remodeling was detected. Proteomic and immunohistochemical analysis confirmed RV myocyte hypertrophy, together with localization of ECM remodeling, inflammatory cell activation, and endothelial cell proliferation within the RV interstitium. In conclusion, hypoxia and hemodynamic load initiate coordinated processes of protective and compensatory RV remodeling to withstand the progression of PH.
Project description:Serotonin is a monoamine that regulates processes such as energy balance and immune function. Manipulating this pathway in growing dairy calves could promote growth and development by modulating functions and signaling pathways within key organs. In this study, we characterized the adipose and muscle transcriptome of pre-weaned calves with increased serotonin bioavailability through the elucidation of differentially expressed genes.