Project description:Intracerebral hemorrhage (ICH) induces alterations in the gut microbiota composition, significantly impacting neuroinflammation post-ICH. However, the impact of gut microbiota absence on neuroinflammation following ICH-induced brain injury remain unexplored. Here, we observed that the gut microbiota absence was associated with reduced neuroinflammation, alleviated neurological dysfunction, and mitigated gut barrier dysfunction post-ICH. In contrast, recolonization of microbiota from ICH-induced SPF mice by transplantation of fecal microbiota (FMT) exacerbated brain injury and gut impairment post-ICH. Additionally, microglia with transcriptional changes mediated the protective effects of gut microbiota absence on brain injury, with Apoe emerging as a hub gene. Subsequently, Apoe deficiency in peri-hematomal microglia was associated with improved brain injury. Finally, we revealed that gut microbiota influence brain injury and gut impairment via gut-derived short-chain fatty acids (SCFA).
Project description:It was recently revealed that gut microbiota promote amyloid-beta (Aβ) burden in mouse models of Alzheimer’s disease (AD). However, the underlying mechanisms when using either germ-free (GF) housing conditions or treatments with antibiotics (ABX) remained unknown. In this study, we show that GF and ABX-treated 5x familial AD (5xFAD) mice developed attenuated hippocampal Aβ pathology and associated neuronal loss, and thereby delayed disease-related memory deficits. While Ab production remained unaffected in both GF and ABX-treated 5xFAD mice, we noticed in GF 5xFAD mice enhanced microglial Aβ uptake at early stages of the disease compared to ABX-treated 5xFAD mice. Furthermore, RNA-sequencing of hippocampal microglia from SPF, GF and ABX-treated 5xFAD mice revealed distinct microbiota-dependent gene expression profiles associated with phagocytosis and altered microglial activation states. Taken together, we observed that constitutive or induced microbiota modulation in 5xFAD mice differentially controls microglial Aβ clearance mechanisms preventing neurodegeneration and cognitive deficits.
Project description:Gut microbiota plays an important role during early development via bidirectional gut- brain signaling. We aimed to explore the potential link between gut microbiota/gut derived metabolites and sympathoadrenal stress responsivity
Project description:Major depressive disorder is caused by gene-environment interactions and the gut microbiota plays a pivotal role in the development of depression. However, the mechanisms by which the gut microbiota modulates depression remain elusive. Herein, we detected the differentially expressed hippocampal long non-coding RNAs (lncRNAs), messenger RNAs (mRNAs) and microRNAs (miRNAs) between mice inoculated with gut microbiota from major depressive disorder patients or healthy controls, to identify the effects of gut microbiota-dysbiosis on gene regulation patterns at the transcriptome level. We also performed functional analysis to explore the microbial-regulated pathological mechanisms of depression. Two hundred mRNAs, 358 lncRNAs and 4 miRNAs were differentially expressed between the two groups. Functional analysis of these differentially expressed mRNAs indicated dysregulated inflammatory response to be the primary pathological change. Intersecting the differentially expressed mRNAs with targets of differentially expressed miRNAs identified 47 intersected mRNAs, which were mainly related to neurodevelopment. Additionally, we constructed a microbial-regulated lncRNA-miRNA-mRNA network based on RNA-RNA interactions. According to the competitive endogenous RNA hypothesis, two neurodevelopmental ceRNA sub-networks implicating in depression were identified. This study provides new understanding of the pathogenesis of depression induced by gut microbiota-dysbiosis and may act as a theoretical basis for the development of gut microbiota-based antidepressants.
2021-12-31 | GSE189159 | GEO
Project description:Gut microbiome modulates hippocampal neurogenesis and stress resilience in adult mice
Project description:Several aspects common to a Western lifestyle, including obesity and decreased physical activity, are known risks for gastrointestinal cancers. There is an increasing amount of evidence suggesting that diet profoundly affects the composition of the intestinal microbiota. Moreover, there is now unequivocal evidence linking a dysbiotic gut to cancer development. Yet, the mechanisms through which high-fat diet (HFD)-mediated changes in the microbial community impact the severity of tumorigenesis in the gut, remain to be determined. Here we demonstrate that HFD promotes tumor progression in the small intestine of genetically susceptible K-rasG12Dint mice independent of obesity. HFD consumption in conjunction with K-Ras mutation mediates a shift in the composition of gut microbiota, which is associated with a decrease in Paneth cell antimicrobial host defense that compromises dendritic cell (DC) recruitment and MHC-II presentation in the gut-associated lymphoid tissues (GALTs). DC recruitment in GALTs can be normalized, and tumor progression attenuated completely, when K-rasG12Dint mice are supplemented with the short-chain fatty acid butyrate, a bacterial fermentation endproduct. Importantly, Myd88-deficiency completely blocks tumor progression in K-rasG12Dint mice. Transfer of fecal samples from diseased donors into healthy adult K-rasG12Dint mice is sufficient to transmit disease in the absence of HFD. Furthermore, treatment with antibiotics completely blocks HFD-induced tumor progression, suggesting a pivotal role for distinct microbial shifts in aggravating disease in the small intestine. Collectively, these data underscore the importance of the reciprocal interaction between host and environmental factors in selecting intestinal microbiota that favor carcinogenesis, and suggest tumorigenesis may be transmissible among genetically predisposed individuals. 3 mice each for each treatment.
Project description:As tissue macrophages of the central nervous system (CNS), microglia are critically involved in diseases of the CNS. However, it remains unknown what controls their maturation and activation under homeostatic conditions. Here we reveal significant contributions of the host microbiota to microglia homeostasis as germ-free (GF) mice displayed global defects in microglia with altered cell proportions and an immature phenotype leading to impaired innate immune responses. Temporal eradication of host microbiota severely changed microglia properties. Limited microbiota complexity also resulted in defective microglia. In contrast, recolonization with a complex microbiota partially restored microglia features. We determined that short-chain fatty acids (SCFA), microbiota-derived bacterial fermentation products, regulate microglia homeostasis. Accordingly, mice deficient for the SCFA receptor FFAR2 mirrored microglia defects found under GF conditions. These findings reveal that host bacteria vitally regulate microglia maturation and function, whereas microglia impairment can be restored to some extent by complex microbiota. For acute inflammatory challenges, LPS was applied intracranially and 6 hours later, animals were analyzed. Control animals were injected PBS i.c. Transcriptional profiles of FACS-sorted microglia were assessed using Affymetrix® (Santa Clara, USA) GeneChip Arrays (Mouse Gene 2.1 ST Arrays).
Project description:Proteostasis is essential for survival and particularly important for highly specialized post mitotic cells like neurons. Transient reduction of protein synthesis by protein kinase R–like endoplasmic reticulum (ER) kinase (PERK)-mediated phosphorylation of eukaryotic translation initiation factor 2α (eIF2α) is a major proteostatic survival response during ER stress. Paradoxically, neurons are remarkably tolerant to PERK dysfunction, which suggests the existence of cell type-specific mechanisms that secure proteostatic stress resilience. We employed PERK-deficient neuron and astrocyte monocultures to investigate the mechanisms underlying neuron-specific ER stress resilience in the absence of PERK.
Project description:The goal of the study was to identify the hippocampal microenvironment asscoaited with stress, in particular stress-induced learned helplessness. By comparing chronic and acute induction of learned helplessness, we identified cell populations and genes associated with resilience.
Project description:Parkinson's disease (PD) is a common neurodegenerative disease in middle-aged and elderly people. The disorder of gut microbiota is involved in the pathophysiological process of various neurological diseases, and many studies have confirmed that gut microbiota is involved in the progression of PD. As one of the most effective methods to reconstruct gut microbiota, fecal microbiota transplantation (FMT) has been considered as an important treatment for PD. However, the mechanism of FMT treatment for PD is still lacking, which requires further exploration and can facilitate the application of FMT. As a model organism, Drosophila is highly conserved with mammalian system in maintaining intestinal homeostasis. In this study, there were significant differences in the gut microbiota of conventional Drosophila colonized from PD patients compared to those transplanted from normal controls. And we constructed rotenone-induced PD model in Drosophila followed by FMT in different groups, and investigated the impact of gut microbiome on transcriptome of the PD host. Microbial analysis by 16S rDNA sequencing showed that gut microbiota could affect bacterial structure of PD, which was confirmed by bacterial colonization results. In addition, transcriptome data suggested that gut microbiota can influence gene expression pattern of PD. Further experimental validations confirmed that lysosome and neuroactive ligand-receptor interaction are the most significantly influenced functional pathways by PD-derived gut microbiota. In summary, our data reveals the influence of PD-derived gut microbiota on host transcriptome and helps better understanding the interaction between gut microbiota and PD through gut-brain axis. The present study will facilitate the understanding of the mechanism underlying PD treatment with FMT in clinical practice.