Project description:These RNA-seq samples represent ten different tissue types for the fifth version of the maize reference genome B73, sequenced by the NAM Consortium Group. These samples correspond to project ID PRJEB32225.
Project description:As a response to insect attack, maize (Zea mays) has inducible defenses that involve large changes in gene expression and metabolism. Piercing/sucking insects such as corn leaf aphids (Rhopalosiphum maidis) cause direct damage by acquiring phloem nutrients as well as indirect damage through the transmission of plant viruses. To elucidate the metabolic processes and gene expression changes involved in maize responses to aphid attack, leaves of inbred line B73 were infested with R. maidis for two to 96 hours.
Project description:A major step in the higher plant life cycle is the decision to leave the mitotic cell cycle and begin the progression through the meiotic cell cycle that leads to the formation of gametes. The molecular mechanisms that regulate this transition and early meiosis remain largely unknown. To gain insight into gene expression features during the initiation of meiotic recombination, we profiled early prophase I meiocytes from maize (Zea mays) using capillary collection to isolate meiocytes, followed by RNA-seq.
Project description:Maize RNA Polymerase D1 (RPD1), the largest subunit of RNA polymerase IV (Pol IV), is required for normal plant development, repression of transposable elements (TEs), and for the regulation of specific alleles associated with TEs. Here, we define the nascent transcriptomes of rpd1 mutant and wild-type (WT) seedlings using global run-on sequencing (GRO-seq) to identify the broader targets of RPD1-based transcriptional regulation. Surprisingly, although TE-like sequences comprise >85% of the maize genome, most TEs are not transcribed at the seedling stage, even in rpd1 mutants. Profile comparisons identify the global set of genes and TEs whose transcription is altered in the absence of RPD1, in some cases in antisense orientation. These results indicate that maize Pol IV specifies Pol II-based transcriptional regulation for certain regions of the maize genome.
Project description:Through hierarchical clustering of transcript abundance data across a diverse set of tissues and developmental stages in maize, we have identified a number of coexpression modules which describe the transcriptional circuits of maize development.