Project description:Characterization of microbial communities at the genomic, transcriptomic, proteomic and metabolomic levels, with a special interest on lipid accumulating bacterial populations, which are naturally enriched in biological wastewater treatment systems and may be harnessed for the conversion of mixed lipid substrates (wastewater) into biodiesel. The project aims to elucidate the genetic blueprints and the functional relevance of specific populations within the community. It focuses on within-population genetic and functional heterogeneity, trying to understand how fine-scale variations contribute to differing lipid accumulating phenotypes. Insights from this project will contribute to the understanding the functioning of microbial ecosystems, and improve optimization and modeling strategies for current and future biological wastewater treatment processes. This project contains datasets derived from the same biological wastewater treatment plant. The data includes metagenomes, metatranscriptomes, metaproteomes and organisms isolated in pure cultures. Characterization of microbial communities at the genomic, transcriptomic, proteomic and metabolomic levels, with a special interest on lipid accumulating bacterial populations, which are naturally enriched in biological wastewater treatment systems and may be harnessed for the conversion of mixed lipid substrates (wastewater) into biodiesel. The project aims to elucidate the genetic blueprints and the functional relevance of specific populations within the community. It focuses on within-population genetic and functional heterogeneity, trying to understand how fine-scale variations contribute to differing lipid accumulating phenotypes. Insights from this project will contribute to the understanding the functioning of microbial ecosystems, and improve optimization and modeling strategies for current and future biological wastewater treatment processes. This project contains datasets derived from the same biological wastewater treatment plant. The data includes metagenomes, metatranscriptomes, metaproteomes and organisms isolated in pure cultures.
2020-08-19 | PXD013655 | Pride
Project description:bacterial community in aquaculture wastewater
| PRJNA1162640 | ENA
Project description:bacterial microbial diversity in wastewater
| PRJNA1098414 | ENA
Project description:bacterial microbial diversity in wastewater
| PRJNA1098476 | ENA
Project description:bacterial microbial diversity in wastewater
| PRJNA1093559 | ENA
Project description:Bacterial microbial diversity in coastal aquaculture sediments
Project description:Because antibiotics have been widely used to prevent severe losses due to infectious fishery diseases, the liberal application and overuse of antibiotics has led to the spread and evolution of bacterial resistance, food safety hazards, and environmental issues. The use of some antibiotics, including florfenicol and enrofloxacin, is allowed in aquaculture in China. Accordingly, to better address the concerns and questions associated with the impact of administered enrofloxacin and florfenicol to grass carp, here we investigated the immune response, bacterial diversity, and transcriptome of the intestine of C. idella treated with these oral antibiotics. The aim of this study was to provide an in-depth evaluation of the antibiotic-induced patterns and dynamics of the microbiota grass carp and the potential mechanism involved.
Project description:To understand microbial community functional structures of activated sludge in wastewater treatment plants (WWTPs) and the effects of environmental factors on their structure, 12 activated sludge samples were collected from four WWTPs in Beijing. GeoChip 4.2 was used to determine the microbial functional genes involved in a variety of biogeochemical processes. The results showed that, for each gene category, such as egl, amyA, nir, ppx, dsrA sox and benAB, there were a number of microorganisms shared by all 12 samples, suggestive of the presence of a core microbial community in the activated sludge of four WWTPs. Variance partitioning analyses (VPA) showed that a total of 53% of microbial community variation can be explained by wastewater characteristics (25%) and operational parameters (23%), respectively. This study provided an overall picture of microbial community functional structures of activated sludge in WWTPs and discerned the linkages between microbial communities and environmental variables in WWTPs. Four full-scale wastewater treatment systems located in Beijing were investigated. Triplicate samples were collected in each site.
Project description:Understanding microbial community diversity is thought to be crucial for improving process functioning and stabilities of wastewater treatment systems. However, current studies largely focus on taxonomic groups based on 16S rRNA, which are not necessarily linked to functioning, or a few selected functional genes. Here we launched a study to profile the overall functional genes of microbial communities in three full-scale wastewater treatment systems. Triplicate activated sludge samples from each system were analyzed using a high-throughput metagenomics tool named GeoChip 4.2, resulting in the detection of 38,507 to 40,647 functional genes. A high similarity of 75.5% to 79.7% shared genes was noted among the nine samples. Moreover, correlation analyses showed that the abundances of a wide array of functional genes were associated with system performances. For example, the abundances of overall nitrogen cycling genes had a strong correlation to total nitrogen (TN) removal rates (r = 0.7647, P < 0.01). The abundances of overall carbon cycling genes were moderately correlated with COD removal rates (r = 0.6515, P < 0.01). Lastly, we found that influent chemical oxygen demand (COD inf) and total phosphorus concentrations (TP inf), and dissolved oxygen (DO) concentrations were key environmental factors shaping the overall functional genes. Together, the results revealed vast functional gene diversity and some links between the functional gene compositions and microbe-mediated processes.