Project description:Comparative genomic analysis of T. cruzi CLB vs Trypanosoma rangeli (strains SC, Choachí, C23, H14, R1625 and PIT10) and Trypanosoma conorhini
Project description:A direct comparison of RNAi in vitro with RNAi in vivo is being performed using RNA interference (RNAi) target sequencing (RIT-Seq) of Trypanosoma brucei to identify all genes specifically required for growth in vivo (the infectome). Assembly of the bloodstream-form T. brucei RNAi library and the RNAi target sequencing (RIT-seq) approach in African trypanosomes were reported previously in Alsford, S. et al. High-throughput phenotyping using parallel sequencing of RNA interference targets in the African trypanosome. Genome Res 21, 915-924, 264 doi:gr.115089.110 [pii] 265 10.1101/gr.115089.110 (2011) and Alsford,S et al. High-throughput decoding of antitrypanosomal drug efficacy and resistance. Nature 482, 232236 doi:10.1038/nature10771 (2012). This data is part of a pre-publication release. For information on the proper use of pre-publication data shared by the Wellcome Trust Sanger Institute (including details of any publication moratoria), please see http://www.sanger.ac.uk/datasharing/
Project description:Individual-nucleotide resolution UV-crosslinking and immunoprecipitation (iCLIP) combined with high-throughput sequencing was performed to generate genome-wide binding maps of two U1-snRNP proteins: U1C and U1-70K in Trypanosoma brucei.