Project description:Hepatitis B Virus (HBV) is a small DNA virus that replicates via an episomal covalently closed circular DNA (cccDNA) that serves as the transcriptional template for viral mRNAs. The host protein, CCCTC-binding factor (CTCF), is a key regulator of cellular transcription by maintaining epigenetic boundaries, nucleosome phasing, stabilisation of long-range chromatin loops and directing alternative exon splicing. We previously reported that CTCF binds two conserved motifs within Enhancer I of the HBV genome and represses viral transcripts, however, the underlying mechanisms were not identified. We show that CTCF depletion in cells harbouring cccDNA-like HBV molecules and in de novo infected cells resulted in an increase in spliced transcripts, which was most notable in the abundant SP1 spliced transcript. In contrast, depletion of CTCF in cell lines with integrated HBV DNA had no effect on the abundance of viral transcripts and in line with this observation there was limited evidence for CTCF binding to viral integrants, suggesting that CTCF-regulation of HBV transcription is specific to episomal cccDNA. Analysis of HBV chromatin topology by Assay for Transposase Accessibility/sequencing (ATAC-Seq) revealed an accessible region spanning Enhancers I and II and the basal core promoter (BCP). Mutating the CTCF binding sites within Enhancer I resulted in a dramatic rearrangement of chromatin accessibility where the open chromatin region was no longer detected, indicating loss of the phased nucleosome up- and down- stream of the HBV enhancer/BCP. These data demonstrate that CTCF functions to regulate HBV chromatin conformation and nucleosomal positioning in episomal maintained cccDNA, which has important consequences for HBV transcription regulation.
Project description:Hepatitis B Virus (HBV) is a small DNA virus that replicates via an episomal covalently closed circular DNA (cccDNA) that serves as the transcriptional template for viral mRNAs. The host protein, CCCTC-binding factor (CTCF), is a key regulator of cellular transcription by maintaining epigenetic boundaries, nucleosome phasing, stabilisation of long-range chromatin loops and directing alternative exon splicing. We previously reported that CTCF binds two conserved motifs within Enhancer I of the HBV genome and represses viral transcripts, however, the underlying mechanisms were not identified. We show that CTCF depletion in cells harbouring cccDNA-like HBV molecules and in de novo infected cells resulted in an increase in spliced transcripts, which was most notable in the abundant SP1 spliced transcript. In contrast, depletion of CTCF in cell lines with integrated HBV DNA had no effect on the abundance of viral transcripts and in line with this observation there was limited evidence for CTCF binding to viral integrants, suggesting that CTCF-regulation of HBV transcription is specific to episomal cccDNA. Analysis of HBV chromatin topology by Assay for Transposase Accessibility/sequencing (ATAC-Seq) revealed an accessible region spanning Enhancers I and II and the basal core promoter (BCP). Mutating the CTCF binding sites within Enhancer I resulted in a dramatic rearrangement of chromatin accessibility where the open chromatin region was no longer detected, indicating loss of the phased nucleosome up- and down- stream of the HBV enhancer/BCP. These data demonstrate that CTCF functions to regulate HBV chromatin conformation and nucleosomal positioning in episomal maintained cccDNA, which has important consequences for HBV transcription regulation.
Project description:Hepatitis B virus (HBV) persists by depositing a covalently closed circular DNA (cccDNA) in the nucleus of infected cells that cannot be targeted by available antivirals. Cytokine treatments can diminish HBV cccDNA via APOBEC3-mediated deamination. Here we show that overexpression of APOBEC3A alone, however, was not sufficient to reduce cccDNA in HBV-infected cells. This required addition of interferon indicating that cccDNA degradation requires an additional, interferon-stimulated gene (ISG). Transcriptome analyses identified ISG20 as the only type I and II interferon-induced, nucleus-resident protein with annotated nuclease activity. ISG20 expression was detected in human livers in acute, self-limiting but not in chronic hepatitis B. ISG20 depletion abolished the interferon-induced loss of cccDNA, and co-expression of ISG20 and APOBEC3A was sufficient to diminish cccDNA. In conclusion, non-cytolytic HBV cccDNA decline requires induction of a deaminase and nuclease. Our findings highlight that ISGs cooperate for their antiviral function and this cooperativity may be explored for therapeutic targeting.
Project description:Background & Aims: Hepatitis B virus (HBV) infection is a major health burden worldwide and currently there is no cure. The persistence of HBV covalently closed circular DNA (cccDNA) is the major obstacle for antiviral treatment. HBV core protein (HBc) has merged as a promising antiviral target, as it plays important roles in critical steps of viral life cycle. However, whether HBc could regulate HBV cccDNA transcription remains to be illustrated. Methods: Synthesized HBV cccDNA and HBVcircle with or without HBc deficiency were transfected into hepatocytes. A recently reported Adeno-Associated Virus (AAV) mediated HBV cccDNA mouse model was employed. Two capsid assembly modulators (CAMs) were used. HBV replication markers were evaluated. Chromatin immunoprecipitation (ChIP) or ChIP sequencing assays were conducted with different transcription factors, histones and RNA polymerase 2. Results: In HBV cccDNA and HBVcircle transfection assays, lack of HBc showed no effect on transcription of HBV RNA as well as HBV surface antigen production. Reconstitution of HBc did not change cccDNA derived HBV markers. Similar results were obtained in vivo, from mouse cccDNA model. ChIP data revealed similar transcription regulation of HBc deficient cccDNA chromatin with wide type cccDNA. Furthermore, CAMs treatment could not alter cccDNA transcription. Conclusions: Our results indicate that HBc neither affects histone modifications and transcription factors binding of cccDNA, nor influences cccDNA transcription. Although CAMs could reduce HBc binding to cccDNA, it does not suppress cccDNA transcriptional activity. Thus, therapeutic targeting capsid or HBc is not sufficient to reduce cccDNA transcription.
Project description:Hepatitis B virus (HBV) persists by depositing a covalently closed circular DNA (cccDNA) in the nucleus that cannot be targeted by available antivirals. Cytokine treatments can purge cccDNA from the nucleus of infected cells by APOBEC3-mediated deamination. cccDNA levels in HBV-infected cells were not reduced by overexpression of APOBEC3A alone, but only after simultaneous addition of interferon. This indicated the need of an additional, interferon-induced factor (ISG). Microarray analysis identified ISG20 as the only nuclease located to the nucleus induced by type I and II interferons. ISG20 was confirmed to be expressed in acute, self-limiting but not in chronic hepatitis B in human livers. ISG20 knockdown abolished the interferon-induced loss of cccDNA, and co-expression of ISG20 and APOBEC3A was sufficient to diminish cccDNA without further treatment. To conclude, nucleolar ISG20 was identified as the nuclease contributing to interferon-induced purging of HBV cccDNA, opening new avenues for antiviral targeting.
Project description:Covalently closed circular DNA (cccDNA) forms the basis for replication and persistence of hepatitis B virus (HBV) in the chronically infected liver. In this study we sought to identify host factors interacting with the HBV genome. Nucleolin (Ncl) was identified as a potential interactor of HBV cccDNA. This interaction was veriefied using an established ChIPseq protocol. The data show that Ncl binds cccDNA albeit at lower levels than HBcAg. Ncl deposition occurs across the genome without a clear localization and a variable pattern of deposition between experiments. This verifies the interaction of Ncl with HBV-cccDNA.