Project description:This SuperSeries is composed of the following subset Series: GSE3730: Replicative senescence in human fibroblasts GSE3731: Replicative senescence in post-selection HMECs Abstract: Replicative senescence is the state of irreversible proliferative arrest that occurs as a concomitant of progressive telomere shortening. By using cDNA microarrays and the gabriel system of computer programs to apply domain-specific and procedural knowledge for data analysis, we investigated global changes in gene transcription occurring during replicative senescence in human fibroblasts and mammary epithelial cells (HMECs). Here we report the identification of transcriptional "fingerprints" unique to senescence, the finding that gene expression perturbations during senescence differ greatly in fibroblasts and HMECs, and the discovery that despite the disparate nature of the chromosomal loci affected by senescence in fibroblasts and HMECs, the up-regulated loci in both types of cells show physical clustering. This clustering, which contrasts with the random distribution of genes down-regulated during senescence or up-regulated during reversible proliferative arrest (i.e., quiescence), supports the view that replicative senescence is associated with alteration of chromatin structure. Refer to individual Series
Project description:Telomere shortening in populations of human mammary epithelial cells (HMECs) that survive early replicative arrest (M0) by the inactivation of p16INK4A during cell culture on plastic dishes leads to a state of permanent replicative arrest termed senescence. While culture of HMECs on feeder layers abrogates M0 and p16INK4A inactivation, progressive telomere attrition in these cells also eventually results in permanent replicative arrest. Expression of telomerase prevents both senescence on plastic (S-P) and senescence on feeder layers (S-FL) in HMECs, as it does also in cultured primary human fibroblasts. We report here that the gene expression profiles of senescence in HMECs of the same lineage maintained under different culture conditions showed surprisingly little commonality. Moreover, neither of these senescence-associated profiles in HMECs resembles the profile for senescence in human fibroblasts. These results indicate that senescence-associated alterations in gene expression resulting from telomere attrition are affected by culture conditions as well as by cell origins, and argue that replicative senescence at the molecular level is a diverse rather than unique cellular process.
Project description:Telomere shortening in populations of human mammary epithelial cells (HMECs) that survive early replicative arrest (M0) by the inactivation of p16INK4A during cell culture on plastic dishes leads to a state of permanent replicative arrest termed senescence. While culture of HMECs on feeder layers abrogates M0 and p16INK4A inactivation, progressive telomere attrition in these cells also eventually results in permanent replicative arrest. Expression of telomerase prevents both senescence on plastic (S-P) and senescence on feeder layers (S-FL) in HMECs, as it does also in cultured primary human fibroblasts. We report here that the gene expression profiles of senescence in HMECs of the same lineage maintained under different culture conditions showed surprisingly little commonality. Moreover, neither of these senescence-associated profiles in HMECs resembles the profile for senescence in human fibroblasts. These results indicate that senescence-associated alterations in gene expression resulting from telomere attrition are affected by culture conditions as well as by cell origins, and argue that replicative senescence at the molecular level is a diverse rather than unique cellular process.
Project description:Abstract: Replicative senescence is the state of irreversible proliferative arrest that occurs as a concomitant of progressive telomere shortening. By using cDNA microarrays and the gabriel system of computer programs to apply domain-specific and procedural knowledge for data analysis, we investigated global changes in gene transcription occurring during replicative senescence in human fibroblasts and mammary epithelial cells (HMECs). Here we report the identification of transcriptional "fingerprints" unique to senescence, the finding that gene expression perturbations during senescence differ greatly in fibroblasts and HMECs, and the discovery that despite the disparate nature of the chromosomal loci affected by senescence in fibroblasts and HMECs, the up-regulated loci in both types of cells show physical clustering. This clustering, which contrasts with the random distribution of genes down-regulated during senescence or up-regulated during reversible proliferative arrest (i.e., quiescence), supports the view that replicative senescence is associated with alteration of chromatin structure. This SuperSeries is composed of the SubSeries listed below.
Project description:Senescence is a permanent cell cycle arrest that occurs in response to cellular stress. Because senescent cells promote age-related disease, there has been considerable interest in defining the proteomic alterations in senescent cells. Because senescence differs greatly depending on cell type and senescence inducer, continued progress in the characterization of senescent cells is needed. Here, we analyzed primary human mammary epithelial cells (HMECs), a model system for aging, using mass spectrometry-based proteomics. By integrating data from replicative senescence, immortalization by telomerase reactivation, and drug-induced senescence, we identified a robust proteomic signature of HMEC senescence consisting of 77 upregulated and 36 downregulated proteins. This approach identified known biomarkers, such as downregulation of the nuclear lamina protein lamin-B1 (LMNB1), and novel upregulated proteins including the β-galactoside-binding protein galectin-7 (LGALS7). Gene ontology enrichment analysis demonstrated that senescent HMECs upregulated lysosomal proteins and downregulated RNA metabolic processes. We additionally integrated our proteomic signature of senescence with transcriptomic data from senescent HMECs to demonstrate that our proteomic signature can discriminate proliferating and senescent HMECs even at the transcriptional level. Taken together, our results demonstrate the power of proteomics to identify cell type-specific signatures of senescence and advance the understanding of senescence in primary HMECs.
Project description:Transcriptional profiling of human mesenchymal stem cells comparing normoxic MSCs cells with hypoxic MSCs cells. Hypoxia may inhibit senescence of MSCs during expansion. Goal was to determine the effects of hypoxia on global MSCs gene expression.
Project description:Transcriptional profiling of human mesenchymal stem cells comparing normoxic MSCs cells with hypoxic MSCs cells. Hypoxia may inhibit senescence of MSCs during expansion. Goal was to determine the effects of hypoxia on global MSCs gene expression. Two-condition experiment, Normoxic MSCs vs. Hypoxic MSCs.