Project description:In submerged cultivation of filamentous microbes, including actinomycetes, complex morphology is one of the critical process features for secondary metabolites production. Ansamitocin P-3 (AP-3), an antitumor agent, is a secondary metabolite produced by Actinosynnema pretiosum ATCC 31280. An excessive mycelial fragmentation of A. pretiosum ATCC 31280 was observed during the early stage of fermentation. In order to identify genes involved in the early mycelial fragmentation, the total RNAs of mycelia collected at 15, 18, and 24 h were extracted and subjected to transcriptome sequencing using RNA-seq technology.Through comparative transcriptomic analysis, a subtilisin-like serine peptidase encoded gene APASM_4178 was identified to be responsible for the mycelial fragmentation. Mutant WYT-5 with the APASM_4178 deletion showed increased biomass and improved AP-3 yield by 43.65%.
2020-05-25 | GSE151010 | GEO
Project description:fermentation liquid microbial community diversity
Project description:To investigate the effect of the transcription factor POX04513 in Penicillium oxalicum on the expression levels of cellulase and xylanase genes in solid and liquid fermentation
2023-05-06 | GSE154882 | GEO
Project description:Anaerobic fermentation liquid Raw sequence reads
| PRJNA842920 | ENA
Project description:Species composition of kitchen waste fermentation liquid
Project description:Gene expression profiles of baker’s yeast during initial dough-fermentation were investigated using liquid fermentation media to obtain insights at the molecular level into rapid adaptation mechanisms of baker’s yeast. Results showed that onset of fermentation caused drastic changes in gene expression profiles within 15 min. Genes involved in the tricarboxylic acid (TCA) cycle were down-regulated and genes involved in glycolysis were up-regulated, indicating a metabolic shift from respiration to fermentation. Genes involved in ethanol production (PDC genes and ADH1), in glycerol synthesis (GPD1 and HOR2), and in low-affinity hexose transporters (HXT1 and HXT3) were up-regulated at the beginning of model dough-fermentation. Among genes up-regulated at 15 min, several genes classified as transcription were down-regulated within 30 min. These down-regulated genes are involved in messenger RNA splicing and ribosomal protein biogenesis, in zinc finger transcription factor proteins, and in transcriptional regulator (SRB8, MIG1). In contrast, genes involved in amino acid metabolism and in vitamin metabolism, such as arginine biosynthesis, riboflavin biosynthesis, and thiamin biosynthesis, were subsequently up-regulated after 30 min. Interestingly, the genes involved in the unfolded protein response (UPR) pathway were also subsequently up-regulated. Our study presents the first overall description of the transcriptional response of baker’s yeast during dough-fermentation, and will thus help clarify genomic responses to various stresses during commercial fermentation processes. Keywords: fermentation
Project description:This SuperSeries is composed of the following subset Series: GSE15686: Meta-transcriptome analysis of a natural wheat sourdough ecosystem during a 10-day spontaneous laboratory fermentation (I) GSE15691: Meta-transcriptome analysis of a natural spelt sourdough ecosystem during a 10-day spontaneous laboratory fermentation (I) GSE15692: Meta-transcriptome analysis of a natural spelt sourdough ecosystem during a 10-day spontaneous laboratory fermentation (II) GSE15693: Meta-transcriptome analysis of a natural wheat sourdough ecosystem during a 10-day spontaneous laboratory fermentation (II) Refer to individual Series