Project description:This SuperSeries is composed of the following subset Series: GSE3977: Comparative Transcript Abundance in E. Coli Degradosome Mutants and their Parental Strains GSE3978: mRNA Decay in E. Coli Degradosome Mutants and their Parental Strains Abstract: RNase E, an essential endoribonuclease of Escherichia coli, interacts through its C-terminal region with multiple other proteins to form a complex termed the RNA degradosome. To investigate the degradosome's proposed role as an RNA decay machine, we used DNA microarrays to globally assess alterations in the steady-state abundance and decay of 4,289 E. coli mRNAs at single-gene resolution in bacteria carrying mutations in the degradosome constituents RNase E, polynucleotide phosphorylase, RhlB helicase, and enolase. Our results show that the functions of all four of these proteins are necessary for normal mRNA turnover. We identified specific transcripts and functionally distinguishable transcript classes whose half-life and abundance were affected congruently by multiple degradosome proteins, affected differentially by mutations in degradosome constituents, or not detectably altered by degradosome mutations. Our results, which argue that decay of some E. coli mRNAs in vivo depends on the action of assembled degradosomes, whereas others are acted on by degradosome proteins functioning independently of the complex, imply the existence of structural features or biochemical factors that target specific classes of mRNAs for decay by degradosomes Refer to individual Series
Project description:Comparative transcript abundance in E. Coli degradosome mutants and their parental strains. Abstract: RNase E, an essential endoribonuclease of Escherichia coli, interacts through its C-terminal region with multiple other proteins to form a complex termed the RNA degradosome. To investigate the degradosome's proposed role as an RNA decay machine, we used DNA microarrays to globally assess alterations in the steady-state abundance and decay of 4,289 E. coli mRNAs at single-gene resolution in bacteria carrying mutations in the degradosome constituents RNase E, polynucleotide phosphorylase, RhlB helicase, and enolase. Our results show that the functions of all four of these proteins are necessary for normal mRNA turnover. We identified specific transcripts and functionally distinguishable transcript classes whose half-life and abundance were affected congruently by multiple degradosome proteins, affected differentially by mutations in degradosome constituents, or not detectably altered by degradosome mutations. Our results, which argue that decay of some E. coli mRNAs in vivo depends on the action of assembled degradosomes, whereas others are acted on by degradosome proteins functioning independently of the complex, imply the existence of structural features or biochemical factors that target specific classes of mRNAs for decay by degradosomes. A genetic modification design type is where an organism(s) has had genetic material removed, rearranged, mutagenized or added, such as knock out. Keywords: genetic_modification_design
Project description:Comparative transcript abundance in E. Coli degradosome mutants and their parental strains. Abstract: RNase E, an essential endoribonuclease of Escherichia coli, interacts through its C-terminal region with multiple other proteins to form a complex termed the RNA degradosome. To investigate the degradosome's proposed role as an RNA decay machine, we used DNA microarrays to globally assess alterations in the steady-state abundance and decay of 4,289 E. coli mRNAs at single-gene resolution in bacteria carrying mutations in the degradosome constituents RNase E, polynucleotide phosphorylase, RhlB helicase, and enolase. Our results show that the functions of all four of these proteins are necessary for normal mRNA turnover. We identified specific transcripts and functionally distinguishable transcript classes whose half-life and abundance were affected congruently by multiple degradosome proteins, affected differentially by mutations in degradosome constituents, or not detectably altered by degradosome mutations. Our results, which argue that decay of some E. coli mRNAs in vivo depends on the action of assembled degradosomes, whereas others are acted on by degradosome proteins functioning independently of the complex, imply the existence of structural features or biochemical factors that target specific classes of mRNAs for decay by degradosomes. A genetic modification design type is where an organism(s) has had genetic material removed, rearranged, mutagenized or added, such as knock out. Computed
Project description:mRNA decay in E. Coli degradosome mutants and their parental strains following transcriptional arrest with rifampicin. Abstract: RNase E, an essential endoribonuclease of Escherichia coli, interacts through its C-terminal region with multiple other proteins to form a complex termed the RNA degradosome. To investigate the degradosome's proposed role as an RNA decay machine, we used DNA microarrays to globally assess alterations in the steady-state abundance and decay of 4,289 E. coli mRNAs at single-gene resolution in bacteria carrying mutations in the degradosome constituents RNase E, polynucleotide phosphorylase, RhlB helicase, and enolase. Our results show that the functions of all four of these proteins are necessary for normal mRNA turnover. We identified specific transcripts and functionally distinguishable transcript classes whose half-life and abundance were affected congruently by multiple degradosome proteins, affected differentially by mutations in degradosome constituents, or not detectably altered by degradosome mutations. Our results, which argue that decay of some E. coli mRNAs in vivo depends on the action of assembled degradosomes, whereas others are acted on by degradosome proteins functioning independently of the complex, imply the existence of structural features or biochemical factors that target specific classes of mRNAs for decay by degradosomes. An RNA stablity experiment design type examines stability and/or decay of RNA transcripts. Keywords: RNA_stability_design
Project description:mRNA decay in E. Coli degradosome mutants and their parental strains following transcriptional arrest with rifampicin. Abstract: RNase E, an essential endoribonuclease of Escherichia coli, interacts through its C-terminal region with multiple other proteins to form a complex termed the RNA degradosome. To investigate the degradosome's proposed role as an RNA decay machine, we used DNA microarrays to globally assess alterations in the steady-state abundance and decay of 4,289 E. coli mRNAs at single-gene resolution in bacteria carrying mutations in the degradosome constituents RNase E, polynucleotide phosphorylase, RhlB helicase, and enolase. Our results show that the functions of all four of these proteins are necessary for normal mRNA turnover. We identified specific transcripts and functionally distinguishable transcript classes whose half-life and abundance were affected congruently by multiple degradosome proteins, affected differentially by mutations in degradosome constituents, or not detectably altered by degradosome mutations. Our results, which argue that decay of some E. coli mRNAs in vivo depends on the action of assembled degradosomes, whereas others are acted on by degradosome proteins functioning independently of the complex, imply the existence of structural features or biochemical factors that target specific classes of mRNAs for decay by degradosomes. An RNA stablity experiment design type examines stability and/or decay of RNA transcripts. User Defined
Project description:Abstract: RNase E, an essential endoribonuclease of Escherichia coli, interacts through its C-terminal region with multiple other proteins to form a complex termed the RNA degradosome. To investigate the degradosome's proposed role as an RNA decay machine, we used DNA microarrays to globally assess alterations in the steady-state abundance and decay of 4,289 E. coli mRNAs at single-gene resolution in bacteria carrying mutations in the degradosome constituents RNase E, polynucleotide phosphorylase, RhlB helicase, and enolase. Our results show that the functions of all four of these proteins are necessary for normal mRNA turnover. We identified specific transcripts and functionally distinguishable transcript classes whose half-life and abundance were affected congruently by multiple degradosome proteins, affected differentially by mutations in degradosome constituents, or not detectably altered by degradosome mutations. Our results, which argue that decay of some E. coli mRNAs in vivo depends on the action of assembled degradosomes, whereas others are acted on by degradosome proteins functioning independently of the complex, imply the existence of structural features or biochemical factors that target specific classes of mRNAs for decay by degradosomes This SuperSeries is composed of the SubSeries listed below.
Project description:In order to understand the impact of genetic variants on transcription and ultimately in changes in observed phenotypes we have measured transcript levels in an Escherichia coli strains collection, for which genetic and phenotypic data has also been measured.