Project description:Mammalian follicle development is characterised by extensive changes in morphology, endocrine responsiveness, and function, providing the optimum environment for oocyte growth, development, and resumption of meiosis. In cattle, the first signs of transcription activation in the oocyte are observed in the secondary follicle, later than during mouse and human oogenesis. While many studies have generated extensive datasets characterising gene expression in bovine oocytes, they are mostly limited to the analysis of fully grown and matured oocytes. The aim of the present study was to apply single-cell RNA sequencing to interrogate the transcriptome of the growing bovine oocyte from the secondary follicle stage through to the mid-antral follicle stage. Single-cell RNA-seq libraries were generated from oocytes of known diameters (<60 to >120 um), and datasets were binned into non-overlapping size groups for downstream analysis. Combining the results of weighted gene co-expression network and Trendy analyses, and differently expressed genes (DEGs) between size groups, we identified a decrease in oxidative phosphorylation and an increase in maternal -genes and transcription regulators across the bovine oocyte growth phase. In addition, around 5,000 genes did not change in expression, revealing a cohort of stable genes. An interesting switch in gene expression profile was noted in oocytes greater than 100 um in diameter, when the expression of genes related to cytoplasmic activities was replaced by genes related to nuclear activities (e.g., chromosome segregation). The highest number of DEGs were detected in the comparison of oocytes 100-109 versus 110-119 um in diameter, revealing a profound change in the molecular profile of oocytes at the end of their growth phase. The current study provides a unique dataset of the key genes and pathways characteristic of each stage of oocyte development, contributing an important resource for a greater understanding of bovine oogenesis.
Project description:BackgroundMammalian follicle development is characterized by extensive changes in morphology, endocrine responsiveness, and function, providing the optimum environment for oocyte growth, development, and resumption of meiosis. In cattle, the first signs of transcription activation in the oocyte are observed in the secondary follicle, later than during mouse and human oogenesis. While many studies have generated extensive datasets characterizing gene expression in bovine oocytes, they are mostly limited to the analysis of fully grown and matured oocytes. The aim of the present study was to apply single-cell RNA sequencing to interrogate the transcriptome of the growing bovine oocyte from the secondary follicle stage through to the mid-antral follicle stage.ResultsSingle-cell RNA-seq libraries were generated from oocytes of known diameters (< 60 to > 120 μm), and datasets were binned into non-overlapping size groups for downstream analysis. Combining the results of weighted gene co-expression network and Trendy analyses, and differently expressed genes (DEGs) between size groups, we identified a decrease in oxidative phosphorylation and an increase in maternal -genes and transcription regulators across the bovine oocyte growth phase. In addition, around 5,000 genes did not change in expression, revealing a cohort of stable genes. An interesting switch in gene expression profile was noted in oocytes greater than 100 μm in diameter, when the expression of genes related to cytoplasmic activities was replaced by genes related to nuclear activities (e.g., chromosome segregation). The highest number of DEGs were detected in the comparison of oocytes 100-109 versus 110-119 μm in diameter, revealing a profound change in the molecular profile of oocytes at the end of their growth phase.ConclusionsThe current study provides a unique dataset of the key genes and pathways characteristic of each stage of oocyte development, contributing an important resource for a greater understanding of bovine oogenesis.
Project description:The palmitoyl-proteome of bovine cumulus-oocyte complexes (COCs) cells was investigated by combining acyl-biotin exchange chemistry and quantitative mass spectrometry analysis.
Project description:In fully grown oocytes, the genome is considered to be globally transcriptionally silenced. However, this conclusion is primarily derived from the results obtained through immunofluorescence staining or inferred from the highly condensed state of chromosomes, lacking more direct evidence. Here, by using a kethoxal-assisted single-stranded DNA sequencing (KAS-seq) approach, we investigated the landscape of single-strand DNA (ssDNA) throughout the genome and provided a readout of the activity and dynamics of transcription during oocyte meiotic maturation. In non-surrounded nucleolus (NSN) oocytes, we observed a robust KAS-seq signal, indicating the high transcriptional activity. In surrounded nucleolus (SN) oocytes, the presence of ssDNA still persists although the KAS-seq signal was relatively weak, suggesting the presence of transcription. Accompanying with the meiotic resumption, the transcriptional activity gradually decreased, and global repression was detected in matured oocytes. Moreover, we preformed the integrative genomics analysis to dissect the transcriptional dynamics during mouse oocyte maturation. In sum, the present study delineates the detailed transcriptional activity during mammalian oocyte maturation.
Project description:Our aim is to characterize the role of the TBP2 protein during the growth of the oocyte. To that aim, we analyzed by RNA-seq the transcriptome of primary oocytes from wild type and Tbp2 null ovaries at the primary (post natal day 7) and secondary follicular stage (post natal day 14).
Project description:Growing mammalian oocytes accumulate substantial amounts of RNA, most of which are degraded during the subsequent maturation stage. The growth-to-maturation transition begins with germinal vesicle breakdown (GVBD, envisioned as nuclear envelope breakdown) and is critical for oocyte quality. However, the concomitant changes in the transcriptome during GVBD as well as the underlying machinery remained unclear. Here, we report that an RNA exosome-associated RNase, EXOSC10, sculpts the transcriptome at multiple level to facilitate the oocyte growth-to-maturation transition. We establish an oocyte-specific knockout of Exosc10 in mice using CRISPR/Cas9 and find female subfertility due to failed GVBD. By performing single oocyte RNA-seq in different ways, we document dysregulated transcriptomes, unsuccessfully processed rRNAs in mutant oocytes, and many up-regulated RNAs that encode proteins important for endomembrane trafficking, meiotic cell cycle and RNA metabolism. EXOSC10-depleted oocytes have impaired endomembrane components including endosome, lysosome, ER and Golgi. In addition, CDK1 fails to be activated possibly due to persistent WEE1 activity, which blocked lamina phosphorylation and disassembly in mutant oocytes. Collectively, we propose that EXOSC10 promotes the growth-to-maturation transition in mouse oocytes by degrading mRNAs that encode growth-phase factors and sculpting the transcriptome to support the maturation phase of oogenesis.
Project description:This study provides the first comprehensive analysis of gene expression and transcriptome dynamics of bovine metaphase II oocytes and in vivo developing bovine embryos. For this study, Affymetrix GeneChip Bovine Genome Array which covers ~23,000 transcripts was used, which revealed several distinct clusters of genes regulated during various stages of bovine preimplantation development. Keywords: Time course