Project description:Two DNA repair pathways, non-homologous end joining (NHEJ) and alternative end joining (A-EJ), are involved in V(D)J recombination and chromosome translocation. Previous studies reported distinct repair mechanisms for chromosome translocation, with NHEJ predominantly involved in human and A-EJ in mice. NHEJ depends on DNA-PKcs, a critical partner in synapsis formation and downstream component activation. While DNA-PKcs inhibition promotes chromosome translocations harboring microhomologies in mice, its synonymous effect in human is not known. We find partial DNA-PKcs inhibition in human cell lines leads to increased genome-wide translocations composed mostly of direct joints, indicating the continued involvement of dampened NHEJ in these processes. In contrast, complete DNA-PKcs inhibition and genetic inhibition DNA-PKcs kinase domain substantially increased microhomology-mediated end joining (MMEJ), thus bridging the two different translocation mechanisms between human and mice. Similar to a previous study on Ku70 deletion, DNA-PKcs deletion in G1/G0-phase mouse pro-B cell lines, impair the recombination of RAG1/2-mediated DNA double-strand breaks (DSBs). This DNA-PKcs-deficient repair mechanism exhibited reduced V(D)J recombination efficiency, increased end resection, decreased polymerase-mediated insertions, loss of recombination fidelity and generated relatively higher rates of chromosome translocation as a consequence of dysregulated coding and signal end joining. Our study underscores DNA-PKcs in suppressing illegitimate chromosome rearrangement in both species.
Project description:DNA-PKcs is a crucial component of the non-homologous end joining (NHEJ) repair machinery. To investigate its function in human cell lines, we conducted a study using K562 and HEK293T cell lines. We introduced twinned DNA double-strand breaks (DSBs) or genome-wide DSBs into these cell lines via nucleofection and transfection, respectively. Subsequently, we employed high-throughput genome translocation sequencing (HTGTS) to capture the translocation events (i.e., ligation between "prey(s)" and "bait") and the rejoining events (i.e., direct repair within the "bait" locus) under different conditions, including with or without DNA-PKcs inhibition or deletion. We quantified the number of translocation events by normalizing them to the number of rejoining events, denoted as TL. Interestingly, DNA-PKcs inhibition led to an increase in TL, indicating a higher frequency of translocations. However, it is important to note that chromosomal translocations still predominantly relied on NHEJ despite DNA-PKcs inhibition. Furthermore, we observed that DNA-PKcs deletion resulted in an elevated utilization of microhomology in translocation formation. Nevertheless, NHEJ remained the primary mechanism driving translocation events.These findings provide valuable insights into the role of DNA-PKcs in the repair pathways involved in translocation events in human cell lines. The utilization of HTGTS allowed us to comprehensively analyze the effects of DNA-PKcs inhibition and deletion, shedding light on the interplay between NHEJ and alternative repair mechanisms in translocation formation.
Project description:Chromosome segregation errors have been linked to DNA damage and genomic rearrangements. Accumulating evidence has shown that catastrophic genomic rearrangements, like chromothripsis, can result from lagging chromosomes undergoing aberrant DNA replication and DNA damage in micronuclei. Detailed characterization of genomic rearrangements resulting from DNA damage in micronuclei has been hampered because of difficulties in culturing daughter cells with DNA damage. Here, we employ a method by which a specific single chromosome is trapped in a micronucleus, followed by transfer to an acceptor cell. Next, stably propagating clonal cell lines with an extra chromosome were established and analyzed by copy number profiling and whole genome sequencing. While non-transformed, p53 proficient and telomerase-immortalized RPE1 cells showed a stable genome following addition of the transferred chromosome, we observed frequent de novo genomic rearrangements in cells derived from the HCT116 colorectal cancer cell line after chromosome transfer. The de novo rearrangements varied from simple deletions and duplications to complex rearrangements. Phase-informative SNPs revealed that the rearrangements specifically occurred on the transferred chromosome. We found that the complex rearrangements recapitulated all features of chromothripsis, including massive oscillation between two copy number states, localization to a single chromosome, random joining of chromosome fragments and non-homologous or micro-homologous repair. We describe an approach that enables the isolation of clonal cell lines with genomic rearrangements and chromothripsis on a specific chromosome in p53 proficient cells. The procedure enables further investigation of the exact mechanism leading to chromothripsis and the analysis of its consequences for cell survival (viability) and cancer development.
Project description:Chromosome segregation errors have been linked to DNA damage and genomic rearrangements. Accumulating evidence has shown that catastrophic genomic rearrangements, like chromothripsis, can result from lagging chromosomes undergoing aberrant DNA replication and DNA damage in micronuclei. Detailed characterization of genomic rearrangements resulting from DNA damage in micronuclei has been hampered because of difficulties in culturing daughter cells with DNA damage. Here, we employ a method by which a specific single chromosome is trapped in a micronucleus, followed by transfer to an acceptor cell. Next, stably propagating clonal cell lines with an extra chromosome were established and analyzed by copy number profiling and whole genome sequencing. While non-transformed, p53 proficient and telomerase-immortalized RPE1 cells showed a stable genome following addition of the transferred chromosome, we observed frequent de novo genomic rearrangements in cells derived from the HCT116 colorectal cancer cell line after chromosome transfer. The de novo rearrangements varied from simple deletions and duplications to complex rearrangements. Phase-informative SNPs revealed that the rearrangements specifically occurred on the transferred chromosome. We found that the complex rearrangements recapitulated all features of chromothripsis, including massive oscillation between two copy number states, localization to a single chromosome, random joining of chromosome fragments and non-homologous or micro-homologous repair. We describe an approach that enables the isolation of clonal cell lines with genomic rearrangements and chromothripsis on a specific chromosome in p53 proficient cells. The procedure enables further investigation of the exact mechanism leading to chromothripsis and the analysis of its consequences for cell survival (viability) and cancer development.
Project description:Chromosome segregation errors have been linked to DNA damage and genomic rearrangements. Accumulating evidence has shown that catastrophic genomic rearrangements, like chromothripsis, can result from lagging chromosomes undergoing aberrant DNA replication and DNA damage in micronuclei. Detailed characterization of genomic rearrangements resulting from DNA damage in micronuclei has been hampered because of difficulties in culturing daughter cells with DNA damage. Here, we employ a method by which a specific single chromosome is trapped in a micronucleus, followed by transfer to an acceptor cell. Next, stably propagating clonal cell lines with an extra chromosome were established and analyzed by copy number profiling and whole genome sequencing. While non-transformed, p53 proficient and telomerase-immortalized RPE1 cells showed a stable genome following addition of the transferred chromosome, we observed frequent de novo genomic rearrangements in cells derived from the HCT116 colorectal cancer cell line after chromosome transfer. The de novo rearrangements varied from simple deletions and duplications to complex rearrangements. Phase-informative SNPs revealed that the rearrangements specifically occurred on the transferred chromosome. We found that the complex rearrangements recapitulated all features of chromothripsis, including massive oscillation between two copy number states, localization to a single chromosome, random joining of chromosome fragments and non-homologous or micro-homologous repair. We describe an approach that enables the isolation of clonal cell lines with genomic rearrangements and chromothripsis on a specific chromosome in p53 proficient cells. The procedure enables further investigation of the exact mechanism leading to chromothripsis and the analysis of its consequences for cell survival (viability) and cancer development. We analyzed 38 cell clones, originating from HCT116 or RPE1 cells respectively, with Illumina beadchip arrays to test for unique de novo copy number variants and to determine the chromosome affacted by the CNAs.
Project description:Chromosome segregation errors have been linked to DNA damage and genomic rearrangements. Accumulating evidence has shown that catastrophic genomic rearrangements, like chromothripsis, can result from lagging chromosomes undergoing aberrant DNA replication and DNA damage in micronuclei. Detailed characterization of genomic rearrangements resulting from DNA damage in micronuclei has been hampered because of difficulties in culturing daughter cells with DNA damage. Here, we employ a method by which a specific single chromosome is trapped in a micronucleus, followed by transfer to an acceptor cell. Next, stably propagating clonal cell lines with an extra chromosome were established and analyzed by copy number profiling and whole genome sequencing. While non-transformed, p53 proficient and telomerase-immortalized RPE1 cells showed a stable genome following addition of the transferred chromosome, we observed frequent de novo genomic rearrangements in cells derived from the HCT116 colorectal cancer cell line after chromosome transfer. The de novo rearrangements varied from simple deletions and duplications to complex rearrangements. Phase-informative SNPs revealed that the rearrangements specifically occurred on the transferred chromosome. We found that the complex rearrangements recapitulated all features of chromothripsis, including massive oscillation between two copy number states, localization to a single chromosome, random joining of chromosome fragments and non-homologous or micro-homologous repair. We describe an approach that enables the isolation of clonal cell lines with genomic rearrangements and chromothripsis on a specific chromosome in p53 proficient cells. The procedure enables further investigation of the exact mechanism leading to chromothripsis and the analysis of its consequences for cell survival (viability) and cancer development. We analyzed 38 cell clones, originating from HCT116 or RPE1 cells respectively, with Illumina beadchip arrays to test for unique de novo copy number variants and to determine the chromosome affacted by the CNAs.
Project description:Chromosomal instability (CIN) generates micronuclei, aberrant extranuclear structures that catalyze the acquisition of complex chromosomal rearrangements present in cancer. Micronuclei are characterized by persistent DNA damage and catastrophic nuclear envelope collapse, exposing DNA to the cytoplasm and driving a pro-inflammatory, pro-metastatic environment. Here, we identify the autophagic receptor p62/SQSTM1 as a regulator of micronuclei. p62 modulates micronuclear stability, influencing chromosome fragmentation and rearrangements, via exerting local spatial control on peri-micronuclear ESCRT-mediated repair activity. We demonstrate that proximity of micronuclei to mitochondria leads to oxidation-driven homo-oligomerization of p62, which triggers autophagic degradation of ESCRT components, thereby limiting their repair activity. Notably, we find that p62 levels correlate with increased chromothripsis across human cancer cell lines and with increased CIN in colorectal tumors. Thus, our study identifies p62 as a novel regulator of micronuclei and indicates that it may serve as a prognostic marker of tumors with high CIN.
Project description:In Saccharomyces cerevisiae, Elevated Levels of Aneuploidy and Chromosome Rearrangements are Separable Genome Instability Events Controlled by the Tel1 and Mec1 Kinases Cancer cells often have elevated frequencies of chromosomal aberrations, and it is likely that loss of genome stability is one driving force behind tumorigenesis. Deficiencies in DNA replication, DNA repair, or cell cycle checkpoints can all contribute to increased rates of chromosomal duplications, deletions and translocations. The Saccharomyces cerevisiae proteins Tel1 and Mec1 (homologues of the human ATM and ATR proteins, respectively) are known to participate in the DNA damage response, replication checkpoint, and telomere maintenance pathways and are critical to maintain genome stability. In the absence of induced DNA damage, tel1 mec1 diploid yeast strains exhibit extremely high rates of chromosome aneuploidy. There is a significant bias towards trisomy of chromosomes II, VIII, X, and XII, whereas the smallest chromosomes I and VI are commonly monosomic. tel1 mec1 strains also demonstrate elevated levels of chromosome rearrangements, including translocations as well as interstitial duplications and deletions. Restoring wild-type telomere length with the Cdc13-Est2 fusion protein substantially reduces the amount of chromosome rearrangements in tel1 mec1 strains. This result suggests that most of the rearrangements are initiated by telomere-telomere fusions. However, the telomere defects associated with tel1 mec1 strains do not cause the high rate of aneuploidy, as restoring proper telomere function does not prevent cells from becoming aneuploid. Our data demonstrate that the same mutant genotype can produce both high levels of chromosome rearrangements and high levels of aneuploidy, and these two types of events occur through separate mechanisms.