Project description:This transcription profiling analysis of Chlorogloeopsis sp. PCC 9212 is designed to study the role of RfpA, RfpB, and RfpC in response to light color change
Project description:Cyanobacteria are important photoautotrophic bacteria with extensive but variable metabolic capacities. The existence of the glyoxylate cycle, a variant of the TCA cycle, is still poorly documented in cyanobacteria. Previous studies reported the activities of isocitrate lyase and malate synthase, the key enzymes of the glyoxylate cycle in some cyanobacteria, but other studies concluded that these enzymes are missing. In this study the genes encoding isocitrate lyase and malate synthase from Chlorogloeopsis fritschii PCC 9212 were identified, and the recombinant enzymes were biochemically characterized. Consistent with the presence of the enzymes of the glyoxylate cycle, C. fritschii could assimilate acetate under both light and dark growth conditions. Transcript abundances for isocitrate lyase and malate synthase increased, and C. fritschii grew faster, when the growth medium was supplemented with acetate. Adding acetate to the growth medium also increased the yield of poly-3-hydroxybutyrate. When the genes encoding isocitrate lyase and malate synthase were expressed in Synechococcus sp. PCC 7002, the acetate assimilation capacity of the resulting strain was greater than that of wild type. Database searches showed that the genes for the glyoxylate cycle exist in only a few other cyanobacteria, all of which are able to fix nitrogen. This study demonstrates that the glyoxylate cycle exists in a few cyanobacteria, and that this pathway plays an important role in the assimilation of acetate for growth in one of those organisms. The glyoxylate cycle might play a role in coordinating carbon and nitrogen metabolism under conditions of nitrogen fixation.
Project description:Ultraviolet A (UV-A) is the major component of UV radiation reaching the Earth's surface, causing indirect damage to photosynthetic organisms via the production of reactive oxygen species (ROS). In comparison, UV-B causes both direct damage to biomolecules and indirect damage. UV-B is well studied in cyanobacterial research due to their long evolutionary history and adaptation to high levels of UV, with less work on the effects of UV-A. In this study, the response of key metabolites in Chlorogloeopsis fritschii (C. fritschii) during 48 h of photosynthetically active radiation (PAR, 15 µmol·m-2·s-1) supplemented with UV-A (11 µmol·m-2·s-1) was investigated using gas chromatography- mass spectrometry (GC-MS). Results showed an overall significant increase in metabolite levels up to 24 h of UV-A exposure. Compared with previously reported UV-B (PAR + UV-B) and PAR only results, UV-A showed more similarity compared to PAR only exposure as opposed to supplemented UV-B. The amino acids glutamate, phenylalanine and leucine showed differences in levels between UV (both supplemented UV-A and supplemented UV-B) and PAR only (non-supplemented PAR), hinting to their relevance in UV stress response. The fatty acids, palmitic and stearic acid, showed positive log2 fold-change (FC) in supplemented UV-A and PAR only experiments but negative log2 FC in UV-B, indicating the more harmful effect of UV-B on primary metabolism. Less research has been conducted on UV-A exposure and cyanobacteria, a potential environmental stimuli for the optimisation of metabolites for industrial biotechnology. This study will add to the literature and knowledge on UV-A stress response at the metabolite level in cyanobacteria, especially within the less well-known species C. fritschii.