Project description:Inherited retinal dystrophies (IRDs) are Mendelian diseases with tremendous genetic and phenotypic heterogeneity. Identification of the underlying genetic basis of these dystrophies is therefore challenging. In this study we employed whole exome sequencing (WES) in 11 families with IRDs and identified disease-causing variants in 8 of them. Sequence analysis of about 250 IRD-associated genes revealed 3 previously reported disease-associated variants in RHO, BEST1 and RP1. We further identified 5 novel pathogenic variants in RPGRIP1 (p.Ser964Profs*37), PRPF8 (p.Tyr2334Leufs*51), CDHR1 (p.Pro133Arg and c.439-17G>A) and PRPF31 (p.Glu183_Met193dup). In addition to confirming the power of WES in genetic diagnosis of IRDs, we document challenges in data analysis and show cases where the underlying genetic causes of IRDs were missed by WES and required additional techniques. For example, the mutation c.439-17G>A in CDHR1 would be rated unlikely applying the standard WES analysis. Only transcript analysis in patient fibroblasts confirmed the pathogenic nature of this variant that affected splicing of CDHR1 by activating a cryptic splice-acceptor site. In another example, a 33-base pair duplication in PRPF31 missed by WES could be identified only via targeted analysis by Sanger sequencing. We discuss the advantages and challenges of using WES to identify mutations in heterogeneous diseases like IRDs.
Project description:Among acute myeloid leukemias (AML) with normal karyotype (CN-AML), NPM1 and CEBPA mutations define WHO provisional entities accounting for ~60% of cases, but the remaining ~40% remains poorly characterized. By whole exome-sequencing (WES) of one CN-AML patient lacking mutations in NPM1, CEBPA, FLT3, MLL-PTD and IDH1, we newly identified a clonal somatic mutation in BCOR (BCL6 co-repressor), a gene located in chromosome X. Further analyses showed that BCOR mutations occurred in 11/262 (4.2%) CN-AML cases and represented a substantial fraction (14/82, 17.1%) of CN-AML patients showing the same genetic background as the index patient subjected to WES. BCOR somatic mutations were: i) disruptive events similar to germline BCOR mutations causing the oculo-cranio-facial-dental (OCFD) genetic syndrome; ii) associated with markedly decreased BCOR mRNA levels, absence of full-length BCOR and absent or low expression of a truncated BCOR protein; iii) almost mutually exclusive with NPM1 mutations and frequently associated with DNMT3A and RUNX1 mutations, pointing to a cooperation between these events. Finally, BCOR mutations correlated with poor outcome among a cohort of 160 CN-AML patients (28% versus 66% overall survival at 2 yrs, P=0.024). Our results implicate for the first time BCOR in the pathogenesis of CN-AML without NPM1 mutations. AML samples with normal karyotype were studied. Molecular analyses were performed for BCOR mutations. 12 BCOR wild-type cases and 12 BCOR mutated cases were hybridized to gene expression micro-arrays.
Project description:Among acute myeloid leukemias (AML) with normal karyotype (CN-AML), NPM1 and CEBPA mutations define WHO provisional entities accounting for ~60% of cases, but the remaining ~40% remains poorly characterized. By whole exome-sequencing (WES) of one CN-AML patient lacking mutations in NPM1, CEBPA, FLT3, MLL-PTD and IDH1, we newly identified a clonal somatic mutation in BCOR (BCL6 co-repressor), a gene located in chromosome X. Further analyses showed that BCOR mutations occurred in 11/262 (4.2%) CN-AML cases and represented a substantial fraction (14/82, 17.1%) of CN-AML patients showing the same genetic background as the index patient subjected to WES. BCOR somatic mutations were: i) disruptive events similar to germline BCOR mutations causing the oculo-cranio-facial-dental (OCFD) genetic syndrome; ii) associated with markedly decreased BCOR mRNA levels, absence of full-length BCOR and absent or low expression of a truncated BCOR protein; iii) almost mutually exclusive with NPM1 mutations and frequently associated with DNMT3A and RUNX1 mutations, pointing to a cooperation between these events. Finally, BCOR mutations correlated with poor outcome among a cohort of 160 CN-AML patients (28% versus 66% overall survival at 2 yrs, P=0.024). Our results implicate for the first time BCOR in the pathogenesis of CN-AML without NPM1 mutations.
Project description:<p>Analysis of the molecular etiologies of severe combined immunodeficiency (SCID) has led to important insights into the control of immune cell development. Most cases of SCID result from either X-linked or autosomal recessive inheritance of mutations in a known causative gene. However, in some cases, the molecular etiology remains unclear. To identify the cause of SCID in a patient known to lack the protein tyrosine phosphatase CD45, we utilized single nucleotide polymorphisms (SNP) arrays and whole exome sequencing. The patient's mother was heterozygous for an inactivating mutation in <i>CD45</i>, while the paternal alleles lacked mutations. The patient exhibited a single <i>CD45</i> mutation identical to the maternal allele. Patient SNP array analysis revealed no change in copy number but loss of heterozygosity for the entire length of chromosome 1 (Chr1), indicating that disease was caused by uniparental disomy (UPD) with isodisomy of the entire maternal Chr1 bearing the <i>CD45</i> mutation. Non-lymphoid blood cells and other mesoderm and ectoderm-derived tissues retained UPD of the entire maternal Chr1 in this patient who had undergone successful bone marrow transplantation. Exome sequencing revealed mutations in 7 additional genes bearing nonsynonymous SNPs predicted to have deleterious effects. These findings represent the first reported case of SCID caused by UPD and suggest UPD should be considered in SCID and other recessive disorders, especially when the patient appears homozygous for an abnormal gene found in only one parent. Evaluation for alterations in other genes affected by UPD should also be considered in such cases.</p>