Project description:The impacts of individual commensal microbes on immunity and disease can differ dramatically depending on the surrounding microbial context, yet the specific bacterial combinations that dictate divergent immunological outcomes in humans remain largely undefined. We isolated a novel Allobaculum strain from an inflammatory bowel disease (IBD) patient that elicited antigen-specific mucosal and systemic antibody responses at homeostasis and exacerbated colitis in gnotobiotic mice. Using human microbiota-associated mouse models, we uncovered an inverse correlation between Allobaculum and the taxonomically-divergent immunostimulatory species Akkermansia muciniphila, which was also reflected in human cohorts. Co-colonization with Allobaculum and A. muciniphila reprogrammed the immune responses evoked by each microbe on its own, ameliorated Allobaculum-induced colitis, and blunted A. muciniphila-induced T and B cell responses. These studies thus identify a reciprocal ‘epistatic’ interaction between unique immunostimulatory human gut bacteria and establish a generalizable framework to dissect the role of microbial context in strain-specific microbial effects on human disease.
Project description:Plasma membrane proton pump maintains proton electrochemical gradient and provides energy to secondary transporters. Arabidopsis mutant plants with reduced proton pump activity grow normal under ideal growth conditions; however their growth are reduced compared with wildtype plants when placed under the conditions that stress on protonmotive force (high external pH or high external potassium).
Project description:Plasma membrane proton pump maintains proton electrochemical gradient and provides energy to secondary transporters. Arabidopsis mutant plants with reduced proton pump activity grow normal under ideal growth conditions; however their growth are reduced compared with wildtype plants when placed under the conditions that stress on protonmotive force (high external pH or high external potassium). Seedlings of wildtype, aha1, and aha2 mutant plants were grown under ideal growth condition. Total RNA from those seedlings were subjected to transcriptome analyses using Affymetrix Gene Chip.