Project description:Hidradenitis suppurativa (HS) skin lesions are infiltrated by numerous inflammatory cell types, which may be subject to and can act upon surrounding tissue stroma and epithelium. Understanding how these networks are locally organized can help identify key nodes sustaining inflammatory and fibrotic processes.
Project description:Hidradenitis suppurativa (HS) is an inflammatory skin disease with limited therapeutic options. We and others have previously identified an abnormal B cell infiltrate within HS lesional skin. We performed scRNASequencing on CD3 negative cells from inflammatory HS skin lesions, healthy control skin and matched blood to better understand infiltrating B cells amongst other immune cells within lesional skin.
Project description:Hidradenitis suppurativa (HS) is an inflammatory skin disease with limited therapeutic options. Identifying transcriptional alterations within non-immune populations of HS lesions versus healthy controls could identify novel targets for therapy. We profiled subsets sorted as live, CD45 negative cells from biopsies of inflammatory lesions of three patients with HS and six specimens from healthy controls to determine what cell types and pathways were altered in HS inflammatory lesions.
Project description:Hidradenitis suppurativa (HS) is an inflammatory skin disease with limited therapeutic options. CD4 T Cells have been described as more inflammatory than T cells in healthy skin. To better understand alterations within the T cell compartment, we profiled CD4 Teffector cells and regulatory T cells (Treg) from inflammatory HS skin lesions and healthy control skin via scRNASequencing.
Project description:This data is from healthy skin tissue and has been used as a reference to compare diseased datasets. The dataset is from experiments of spatial transcriptomics.
Project description:Spatial organization of different cell types within prenatal skin across various anatomical sites is not well understood. To address this, here we have generated spatial transcriptomics data from prenatal facial and abdominal skin obtained from a donor at 10 post conception weeks. This in combination with our prenatal skin scRNA-seq dataset has helped us map the location of various identified cell types.