Project description:In eukaryotes, biogenesis of ribosomes requires folding and assembly of the precursor rRNA (pre-rRNA) with a large number of proteins and snoRNPs into huge RNA-protein complexes. In spite of intense genetic, biochemical and high resolution cryo-EM studies in Saccharomyces cerevisiae, information about the conformation of the earliest 35S pre-rRNA is limited. To overcome this, we performed high-throughput SHAPE chemical probing on the 35S pre-rRNA associated with 90S pre-ribosomes. We focused our analyses on external (5´ETS) and internal (ITS1) transcribed spacers as well as the 18S region. We show that in the 35S pre-rRNA, the central region of the 18S is in a more open configuration compared to 20S pre-rRNA and that the central pseudoknot is not formed. The essential ribosome biogenesis protein Mrd1 influences the structure of the 18S part locally and is involved in organizing the central pseudoknot and surrounding structures. Our results demonstrate that the U3 snoRNA dynamically interacts with the 35S pre-rRNA and that Mrd1 is required for disrupting U3 snoRNA base-pairing interactions in the 5'ETS. We propose that the dynamic U3 snoRNA interactions and Mrd1 are essential for establishing the structure of the central region of 18S that is required for processing and 40S subunit function.
Project description:Ribosome biogenesis is essential for protein synthesis in gene expression. Yeast eIF5B has been shown biochemically to facilitate 18S rRNA 3’ end maturation during late-40S ribosomal subunit assembly and gate the transition from translation initiation to elongation. But the effects of eIF5B have not been studied at the genome-wide level in any organism, and 18S rRNA 3’ end maturation is poorly understood in plants. Arabidopsis HOT3/eIF5B1 was found to promote development and heat-stress acclimation by translational regulation, but its molecular function remained unknown. Here, we show that HOT3 is a late-stage ribosome biogenesis factor that facilitates 18S rRNA 3’ end processing and is a translation initiation factor that globally impacts the transition from initiation to elongation. By developing and implementing 18S-ENDseq, we revealed previously unknown events in 18S rRNA 3’ end maturation or metabolism. We quantitatively defined new processing hotspots and identified adenylation as the prevalent non-templated RNA modification at the 3’ ends of pre-18S rRNAs. Aberrant 18S rRNA maturation in hot3 further activated RNAi to generate RDR1- and DCL2/4-dependent risiRNAs mainly from a 3’ portion of 18S rRNA. We further showed that risiRNAs in hot3 were predominantly localized in ribosome-free fractions not responsible for the 18S rRNA maturation or translation initiation defects in hot3. Our study uncovered the molecular function of HOT3/eIF5B1 in 18S rRNA maturation at the late-40S assembly stage and revealed the regulatory crosstalk among ribosome biogenesis, mRNA translation initiation, and siRNA biogenesis in plants.