Project description:Gut microbiota has profound effects on obesity and associated metabolic disorders. Targeting and shaping the gut microbiota via dietary intervention using probiotics, prebiotics and synbiotics can be effective in obesity management. Despite the well-known association between gut microbiota and obesity, the microbial alternations by synbiotics intervention, especially at the functional level, are still not characterized. In this study, we investigated the effects of synbiotics on high fat diet (HFD)-induced metabolic disorders, and systematically profiled the microbial profile at both the phylogenetic and functional levels. Synbiotics significantly reversed the HFD-induced change of microbial populations at the levels of richness, taxa and OTUs. Potentially important species Faecalibaculum rodentium and Alistipes putredinis that might mediate the beneficial effects of synbiotics were identified. At the functional level, short chain fatty acid and bile acid profiles revealed that interventions significantly restored cecal levels of acetate, propionate, and butyrate, and synbiotics reduced the elevated total bile acid level. Metaproteomics revealed the effect of synbiotics might be mediated through pathways involved in carbohydrate, amino acid, and energy metabolisms, replication and repair, etc. These results suggested that dietary intervention using our novel synbiotics alleviated HFD-induced weight gain and restored microbial ecosystem homeostasis phylogenetically and functionally.
2022-02-22 | PXD009564 | Pride
Project description:Effect of variuos prebiotics on mouse gut microbiota
Project description:It is increasingly recognised that the gastrointestinal microbiota plays a critical role in human health and promising evidence is accumulating that with dietary strategies, of prebiotic intervention, microbiota imbalances can be corrected and host health improved. Several prebiotics are widely used commercially in foods including inulin, fructo-oligosaccharides, galacto-oligosaccharides and resistant starches and there is convincing evidence, in particular for galacto-oligosaccharides, that prebiotics can modulate the microbiota and promote the growth of bifidobacteria in the intestinal tract of infants and adults. In this study we describe the identification and functional characterisation of the genetic loci responsible for the transport and metabolism of purified galacto-oligosaccharides (PGOS) by our model bifidobacterial strain, B. breve UCC2003. We further demonstrate that the extracellular endogalactanase specified by several B. breve strains, including B. breve UCC2003, is essential for metabolism of PGOS components with a long retention time and high degree of polymerisation. These PGOS components are transported into the bifidobacterial cell via various ABC transport systems and sugar permeases where they are further metabolised to galactose and glucose monomers that feed into the bifid shunt. This research described here advances our understanding of GOS metabolism by bifidobacteria and for the future there is great potential for exploiting bifidobacterial beta-galactosidase to create targeted prebiotics that can enrich for selected Bifiobacteria sp. and other beneficial microbes among the gut microbiota.
Project description:The gut microbiota plays an important role in host health. Microbiota dysbiosis has been implicated in the global epidemic of Metabolic Syndrome (MetS) and could impair host metabolism by noxious metabolites. It has been well established that the gut microbiota is shaped by host immune factors. However, the effect of T cells on the gut microbiota is yet unknown. Here, we performed a metagenomic whole-genome shotgun sequencing (mWGS) study of the microbiota of TCRb-/- mice, which lack alpha/beta T cells.
Project description:Insect gut microbiota plays important roles in acquiring nutrition, preventing pathogens infection, immune responses, and communicating with the environment. Gut microbiota can be affected by some external factors such as foods, temperature, and antibiotics. Spodoptera frugiperda (Lepidoptera: Noctuidae) is an important destructive pest of grain crops all over the world. The function of gut microbiota in S. frugiperda remains to be investigated. In this study, we fed the S. frugiperda with the antibiotic mixture (penicillin, gentamicin, rifampicin, and streptomycin) to perturb the gut microbiota, and further examined the effect of dysbiosis in gut microbiota on the gene expression of S. frugiperda by RNA sequencing. We found the composition and diversity of the gut bacterial community were changed in S. frugiperda after antibiotics treatmen, and the expression of genes related to energy and metabolic process were affected after antibiotics exposure in S. frugiperda. Our work will help understand the role of gut microbiota in insects.
Project description:Background: The long-term high-fat, high-sugar diet exacerbates type 2 diabetes mellitus (T2DM)-related cognitive impairments. The negative impact of poor dietary patterns on brain development and neurological function may be related to gut microbiota disturbance. The role of phlorizin in mitigating glucose and lipid metabolism disorders is well documented. However, the protective effect of phlorizin on diabetes-related cognitive dysfunction is unclear. Therefore, the present study aimed to investigate the effect of dietary supplementation of phlorizin on high-fat and high-fructose diet (HFFD)-induced cognitive dysfunction and evaluate the crucial role of the microbiota-gut-brain axis. Results: Dietary supplementation of phlorizin for 14 weeks effectively prevented glucolipid metabolism disorder, spatial learning impairment, and memory impairment in HFFD mice. In addition, phlorizin improved the HFFD-induced decrease in synaptic plasticity, neuroinflammation, and excessive activation of microglia in the hippocampus. Transcriptomics analysis shows that the protective effect of phlorizin on cognitive impairment was associated with increased expression of neurotransmitters and synapse-related genes in the hippocampus. Phlorizin treatment alleviated colon microbiota disturbance, mainly manifested by an increase in gut microbiota diversity and the abundance of short-chain fatty acid (SCFA)-producing bacteria. The level of microbial metabolites, including SCFA, inosine 5'-monophosphate (IMP), and D (-)-beta-hydroxybutyric acid (BHB) were also significantly increased after phlorizin treatment. Moreover, integrating multiomics analysis observed tight connections between phlorizin-regulated genes, microbiota, and metabolites. Furthermore, removal of the gut microbiota via antibiotics treatment diminished the protective effect of phlorizin against HFFD-induced cognitive impairment, underscoring the critical role of the gut microbiota in mediating cognitive behavior. Importantly, supplementation with SCFA and BHB alone mimicked the regulatory effects of phlorizin on cognitive function. Conclusions: These results indicate that gut microbiota and their metabolites mediate the ameliorative effect of phlorizin on HFFD-induced cognitive impairment. Therefore, phlorizin can be used as an easy-to-implement nutritional therapy to prevent and alleviate metabolism-related neurodegenerative diseases by targeting the regulation of the microbiome-gut-brain axis.
Project description:Gut microbiota and the circadian clock are both key regulators of the metabolic processes. Although recent evidence points to the impact of the circadian clock on microbiota, gut microbiota effect on diurnal host gene expression remains elusive. A transcriptome analysis of germ-free mice reveals subtle changes in circadian clock gene expression. However, a lack of microbiome leads to liver feminization and alters the expression of male-specific genes involved in lipid metabolism and xenobiotic detoxification associated with sustained activation of the Growth Hormone pathway. These results emphasize the mutual interaction of gut microbiota and its host even on unexpected functions.
Project description:Gut microbiota and the circadian clock are both key regulators of the metabolic processes. Although recent evidence points to the impact of the circadian clock on microbiota, gut microbiota effect on diurnal host gene expression remains elusive. A transcriptome analysis of germ-free mice reveals subtle changes in circadian clock gene expression. However, a lack of microbiome leads to liver feminization and alters the expression of male-specific genes involved in lipid metabolism and xenobiotic detoxification associated with sustained activation of the Growth Hormone pathway. These results emphasize the mutual interaction of gut microbiota and its host even on unexpected functions.
Project description:Gut microbiota and the circadian clock are both key regulators of the metabolic processes. Although recent evidence points to the impact of the circadian clock on microbiota, gut microbiota effect on diurnal host gene expression remains elusive. A transcriptome analysis of germ-free mice reveals subtle changes in circadian clock gene expression. However, a lack of microbiome leads to liver feminization and alters the expression of male-specific genes involved in lipid metabolism and xenobiotic detoxification associated with sustained activation of the Growth Hormone pathway. These results emphasize the mutual interaction of gut microbiota and its host even on unexpected functions.
Project description:Gut microbiota and the circadian clock are both key regulators of the metabolic processes. Although recent evidence points to the impact of the circadian clock on microbiota, gut microbiota effect on diurnal host gene expression remains elusive. A transcriptome analysis of germ-free mice reveals subtle changes in circadian clock gene expression. However, a lack of microbiome leads to liver feminization and alters the expression of male-specific genes involved in lipid metabolism and xenobiotic detoxification associated with sustained activation of the Growth Hormone pathway. These results emphasize the mutual interaction of gut microbiota and its host even on unexpected functions.