Project description:A spectrum dataset with 329 tree leaf samples and a blank control file from Yunnan Province, Southwest China. Collection and extraction was completed in Yang Jie Group
| MSV000092950 | MassIVE
Project description:Microbiome community survey in karst rocky desertification regions
Project description:Yunnan Province, China is thought to be the original source of biovar Orientalis of Yersinia pestis, the causative agent of the third plague pandemic that has spread globally since the end of the 19th century. Although encompassing a large area of natural plague foci, Y. pestis strains have rarely been found in live rodents during surveillance in Yunnan, and most isolates are from rodent corpses and their fleas. In 2017, 10 Y. pestis strains were isolated from seven live rodents and three fleas in Heqing County (HQ) of Yunnan. These strains were supposed to have low virulence to local rodents Eothenomys miletus and Apodemus chevrieri because the rodents were healthy and no dead animals were found in surrounding areas, as had occurred in previous epizootic disease. We performed microscopic and biochemical examinations of the isolates,and compared their whole-genome sequences and transcriptome with those of 10 high virulence Y. pestis strains that were isolated from the adjacent city (Lijiang). We analyzed the phenotypic, genomic, and transcriptomic characteristics of live rodent isolates. The isolates formed a previously undefined monophyletic branch of Y. pestis that was named 1.IN5. Six SNPs, two indels, and one copy number variation were detected between live rodent isolates and the high virulence neighbors. No obvious functional consequence of these variations was found according to the known annotation information. Among the genes that were differentially expressed between the live rodent isolates and their high virulence neighbors, we detected five iron transfer-related genes that were significantly up-regulated in live rodent isolates compared with high virulence isolates (|log2 (FC) | >1, p.adjust <0.05), indicating these genes may be related to the low-virulence phenotype. The novel genotype of Y. pestis reported here provides further insights into the evolution and spread of plague as well as clues that may help to decipher the virulence mechanism of this notorious pathogen.
Project description:Longissimus muscle samples were collected from lambs exposed in utero to mycotoxins (E-, endophyte-free tall fescue seed without ergot alkaloids or E+, endophyte-infected tall fescue seed containing ergot alkaloids) during mid-gestation (MID; E+/E-; N) or late-gestation (LATE; E-/E+; T) harvested at two developmental stages (FETAL, gestational d133) or (MKT, near maturity, 250 d of age). Muscle samples were examined to determine the impact of in utero mycotoxin exposure on skeletal muscle fiber hypertrophy and the miRNA transcriptome at FETAL and MKT.
Project description:Perennial ryegrass (Lolium perenne L.) is the most cultivated cool-season grass worldwide with crucial roles in carbon fixation and fodder for livestock. Protection of these grasses from biotic and abiotic factors are dictated through a mutually-beneficial relationship with endophytes that confer bioprotective properties. Common endophytes of the genus Epichloë promote the health and survival of cool-season forages greases and protect the plants from fluctuating environmental conditions. Climate change, and specifically, a steady increase in atmospheric CO2 levels, presents a dramatic and imminent threat faced by our ecosystem, which poses substantial pressures on plant health and survival. Defining the relationships between endophytes and the host plant may uncover mechanisms of bioprotection, which can be exploited to promote adaptable plant systems in rising CO2 conditions. In this study, we quantify changes in biomass and seed production of L. perenne L. at 400 and 800 ppm CO2 and identify endophyte-specific changes in metabolite production. Additionally, we discover protein-level changes from both the endophyte and plant perspectives, which underscore the compatible relationship between a common, natural endophyte and L. perenne L., compared to an incompatible and detrimental relationship the epichloid strain, AR1. Taken together, our data set provides new understanding into the intricacy of compatibility between endophyte and host from multiple molecular levels and suggests opportunity to promote plant robustness and survivability in rising CO2 environmental conditions through application of bioprotective epichloid strains.
2021-02-12 | PXD017961 | Pride
Project description:Bryophytes and their symbiotic microorganisms in karst rocky desertification areas
| PRJNA557311 | ENA
Project description:Diversity of endophytic bacteria and nitrogen-fixing bacteria in nodules of Vicia villosa in rocky desertification area of Southwest
Project description:Diversity of endophytic bacteria and nitrogen-fixing bacteria in nodules of Vicia villosa in rocky desertification area of Southwest