Project description:Streptococcus suis is an important zoonotic pathogen that can cause meningitis and sepsis in both pigs and humans. In this study,we evaluated the genetic difference of 40 Streptococcus suis strains belonging to various sequence types by comparative genomic hybridization to identify genes associated with the variation in pathogenicity using NimbleGen’s tilling microarray platform. Application of Comparative Phylogenomics to Identify Genetic Differences Relating to Pathogenicity of Streptococcus suis
Project description:Bats are natural hosts for a wide diversity of viruses. While many of these viruses are highly pathogenic in humans, most do not appear to cause major symptoms in bats. These modern bat-specific characteristics are the result of past virus-host (co)evolution and virus-driven host adaptations. Innate immunity is the first line of defense against viruses in mammals, we aim at characterizing bat innate immunity in response to viruses. Using genome-wide and gene candidate evolutionary analyses, we found that many bat antiviral genes have undergone multiple duplication events in a lineage-specific manner, specifically in the Myotis bat lineage. We focus on Myotis yumanensis as a model in the Myotis lineage. We performed transcriptomic analyses and observed the upregulation of most mammalian genes implicated in the different steps of the innate immune response from sensing to interferon-stimulated genes (ISGs), showing the conservation of the core innate immunity. Our study will contribute to identifying adaptations that shaped bat innate immunity. These adaptations may contribute to the bat-virus specificity and influence viral emergence to another mammalian host
Project description:Deep sequencing of mRNA from Myotis brandtii. Analysis of poly(A)+ RNA of livers, kidneys and brains from M. brandtii hibernated for 2 months, hibernated for 6 months and summer active animals.