Project description:Comparing gene expression in Oral and genital lichen planus with normal oral and genital epithelium trying to idenitfy differently expressed genes in lichen planus compared to normal epithelium Total RNA obtained from oral and genital lichen planus epithelium compared with normal oral and genital epithelium
Project description:In this study, we compared microRNA (miRNA) profiles of salivary exosomes of patients with oral lichen planus with those of healthy controls. Saliva samples from 16 patients with oral lichen planus and 8 healthy controls were divided into 2 sets and were examined by performing miRNA microarray analysis.
Project description:In this study, we compared microRNA (miRNA) profiles of salivary exosomes of patients with oral lichen planus with those of healthy controls. Saliva samples from 16 patients with oral lichen planus and 8 healthy controls were divided into 2 sets and were examined by performing miRNA microarray analysis.
Project description:We compared the transcriptomes of tissues from Oral lichen planus patients with immunosuppressive therapy to reveal the biological mechanism of oral lichen planus treatment.
Project description:Comparing gene expression in Oral and genital lichen planus with normal oral and genital epithelium trying to idenitfy differently expressed genes in lichen planus compared to normal epithelium
Project description:Although previous studies have addressed the possible benefits of arbuscular mycorrhizal (AM) symbiosis for rice plants under salinity, the underlying molecular mechanisms are still unclear. Here, we showed that rice colonized with AM fungi had better growth performance and higher K+/Na+ ratio under salt stress. Differentially expressed genes (DEGs) responding to AM symbiosis especially under salt stress were obtained from RNA sequencing. AM-regulated DEGs in cell wall modification and peroxidases categories were mainly upregulated in shoots, suggesting AM symbiosis might assist in relaxing the cell wall and scavenging reactive oxygen species (ROS). AM symbiosis indeed improved ROS scavenging capacity in rice shoots under salt stress. In addition, genes involved in Calvin cycle and terpenoid synthesis were enhanced by AM symbiosis in shoots and roots under salt stress, respectively. AM-upregulated cation transporters and aquaporin in both shoots and roots were highlighted. Strikingly, “protein tyrosine kinase activity” subcategory was the most significantly over-represented GO term among all AM-upregulated and downregulated DEGs in both shoots and roots, highlighting the importance of kinase on AM-enhanced salinity tolerance. Overall, our results from the transcriptomic analyses indicate that AM symbiosis uses a multipronged approach to help plants achieve salt stress tolerance.
Project description:Lichens are a source of secondary metabolites with significant pharmacological potential. Data regarding their possible application in glioblastoma (GBM) treatment are, however scarce. The study aimed to analyze the mechanism of action of six lichen secondary metabolites: atranorin, caperatic acid, physodic acid, squamatic acid, salazinic acid, and lecanoric acid using two- and three-dimensional GBM cell line models. The Parallel Artificial Membrane Permeation Assay was used to predict the blood-brain barrier penetration ability of the tested compounds. Their cytotoxicity was analyzed using MTT test on A-172, T98G, and U-138 MG cells. Flow cytometry was applied for the analysis of oxidative stress, cell cycle distribution, and apoptosis, whereas qPCR and microarrays detected the induced transcriptomic changes. Our data confirm the ability of lichen secondary metabolites to cross the blood-brain barrier and exert cytotoxicity against GBM cells. Moreover, the compounds generated oxidative stress, interfered with the cell cycle, and induced apoptosis in T98G cells. They also inhibited Wnt/β-catenin pathway, and this effect was even stronger in case of a co-treatment with temozolomide. Transcriptomic changes in cancer related genes induced by caperatic acid and temozolomide were the most pronounced. Lichen secondary metabolites, in particular caperatic acid should be further analyzed as potential anti-GBM agents.
Project description:Corals rely on a symbiosis with dinoflagellate algae (Symbiodinium spp.) to thrive in nutrient poor tropical oceans. However, the coral-algal symbiosis can break down during bleaching events, potentially leading to coral death. While genome-wide expression studies have shown the genes associated with the breakdown of this partnership, the full conglomerate of genes responsible for the establishment and maintenance of a healthy symbiosis remains unknown. Results from previous studies suggested little transcriptomic change associated with the establishment of symbiosis. In order to elucidate the transcriptomic response of the coral host in the presence of its associated symbiont, we utilized a comparative framework. Post-metamorphic aposymbiotic coral polyps of Orbicella faveolata were compared to symbiotic coral polyps 9 days after metamorphosis and the subsequent differential gene expression between control and treatment was quantified using cDNA microarray technology. Coral polyps exhibited differential expression of genes associated with nutrient metabolism and development, providing insight into pathways turned as a result of symbiosis driving early polyp growth. Furthermore, genes associated with lysosomal fusion were also upregulated, suggesting host regulation of symbiont densities soon after infection.
Project description:In this study, we compared microRNA (miRNA) profiles of salivary exosomes of patients with oral lichen planus with those of healthy controls. Saliva samples from 16 patients with oral lichen planus and 8 healthy controls were divided into 2 sets and were examined by performing miRNA microarray analysis. Examination of 8 oral lichen planus patients and 4 healthy controls. Each patient and control represent pooled RNAs from salivary exosomes of 8 patients and 4 healthy controls, respectively. Please note that each set (i.e. set1 and set2) was analysed independently.