Project description:Staphylococcus epidermidis (S. epidermidis) ATCC 12228 was incubated with 2% polyethylene glycol (PEG)-8 Laurate to yield electricity which was measured by a voltage difference between electrodes. Production of electron was validated by a Ferrozine assay. The anti-Cutibacterium acnes (C. acnes) activity of electrogenic S. epidermidis was assessed in vitro and in vivo. The voltage change (~ 4.4 mV) reached a peak 60 min after pipetting S. epidermidis plus 2% PEG-8 Laurate onto anodes. The electricity produced by S. epidermidis caused significant growth attenuation and cell lysis of C. acnes. Intradermal injection of C. acnes and S. epidermidis plus PEG-8 Laurate into the mouse ear considerably suppressed the growth of C. acnes. This suppressive effect was noticeably reversed when cyclophilin A of S. epidermidis was inhibited, indicating the essential role of cyclophilin A in electricity production of S. epidermidis against C. acnes. In summary, we demonstrate for the first time that skin S. epidermidis, in the presence of PEG-8 Laurate, can mediate cyclophilin A to elicit an electrical current that has anti-C. acnes effects. Electricity generated by S. epidermidis may confer immediate innate immunity in acne lesions to rein in the overgrowth of C. acnes at the onset of acne vulgaris.
Project description:Biofilm formation by bacterial pathogens is associated with numerous human diseases and can confer resistance to both antibiotics and host defenses. Many strains of Staphylococcus epidermidis are capable of forming biofilms and are important human pathogens. Since S. epidermidis coexists with abundant Cutibacteria acnes on healthy human skin and does not typically form a biofilm in this environment, we hypothesized that C. acnes may influence biofilm formation of S. epidermidis. Culture supernatants from C. acnes and other species of Cutibacteria inhibited S. epidermidis but did not inhibit biofilms by Pseudomonas aeruginosa or Bacillus subtilis, and inhibited biofilms by S. aureus to a lesser extent. Biofilm inhibitory activity exhibited chemical properties of short chain fatty acids known to be produced from C. acnes. The addition of the pure short chain fatty acids propionic, isobutyric or isovaleric acid to S. epidermidis inhibited biofilm formation and, similarly to C. acnes supernatant, reduced polysaccharide synthesis by S. epidermidis. Both short chain fatty acids and C. acnes culture supernatant also increased sensitivity of S. epidermidis to antibiotic killing under biofilm-forming conditions. These observations suggest the presence of C. acnes in a diverse microbial community with S. epidermidis can be beneficial to the host and demonstrates that short chain fatty acids may be useful to limit formation of a biofilm by S. epidermidis.
Project description:The probiotic activity of skin Staphylococcus epidermidis (S. epidermidis) bacteria can elicit diverse biological functions via the fermentation of various carbon sources. Here, we found that polyethylene glycol (PEG)-8 Laurate, a carbon-rich molecule, can selectively induce the fermentation of S. epidermidis, not Cutibacterium acnes (C. acnes), a bacterium associated with acne vulgaris. The PEG-8 Laurate fermentation of S. epidermidis remarkably diminished the growth of C. acnes and the C. acnes-induced production of pro-inflammatory macrophage-inflammatory protein 2 (MIP-2) cytokines in mice. Fermentation media enhanced the anti-C. acnes activity of a low dose (0.1%) clindamycin, a prescription antibiotic commonly used to treat acne vulgaris, in terms of the suppression of C. acnes colonization and MIP-2 production. Furthermore, PEG-8 Laurate fermentation of S. epidermidis boosted the activity of 0.1% clindamycin to reduce the sizes of C. acnes colonies. Our results demonstrated, for the first time, that the PEG-8 Laurate fermentation of S. epidermidis displayed the adjuvant effect on promoting the efficacy of low-dose clindamycin against C. acnes. Targeting C. acnes by lowering the required doses of antibiotics may avoid the risk of creating drug-resistant C. acnes and maintain the bacterial homeostasis in the skin microbiome, leading to a novel modality for the antibiotic treatment of acne vulgaris.
Project description:Cutibacterium acnes (C. acnes) is a ubiquitous skin commensal bacterium that is generally well tolerated by the immune system. Different strain-types of C. acnes have been reported to be enriched on patients with acne. To understand if these strain-types contribute to skin inflammation, we generated a library of over 200 C. acnes isolates from skin swabs of healthy and acne subjects and assessed their strain-level identity and inflammatory potential. Phylotype II K-type strains were more frequent on healthy and acne non-lesional skin compared to lesional. Phylotype IA-1 C-type strains were dominant on acne lesional skin but absent from healthy. Measurement of host cytokine responses from C. acnes supernatant revealed neither strain-type nor skin-type association predicted inflammatory potential. However, differential proinflammatory responses were induced from identical strain-types, but these differences were not attributable to protease, short chain fatty acid or porphyrin production. Instead, whole genome sequencing revealed the presence of a linear plasmid in high inflammatory strain-types. Intradermal injection of C. acnes in mouse skin revealed a plasmid-associated inflammatory response in dermal fibroblasts, revealed by single-cell RNA sequencing. We conclude that C. acnes strain-type is not sufficient to predict inflammation but other virulence factors including a plasmid may contribute to disease.
Project description:Antibiotics without selectivity for acne treatment may destroy the beneficial microbes in the human microbiome that helps to fight Cutibacterium acnes (C. acnes), a bacterium associated with inflammatory acne vulgaris. Probiotic treatment by direct application of live Staphylococcus epidermidis (S. epidermidis) onto the open acne lesions may run the risk of bloodstream infections. Here, we fabricated the polysulfone microtube array membranes (PSF MTAM) to encapsulate probiotic S.epidermidis. We demonstrate that the application of the encapsulation of S.epidermidis in PSF MTAM enhanced the glycerol fermentation activities of S. epidermidis. To mimic the granulomatous type of acne inflammatory acne vulgaris, the ears of mice were injected intradermally with C.acnes to induce the secretion of macrophage inflammatory protein-2 (MIP-2), a murine counterpart of human interleukin (IL)-8. The C. acnes-injected mouse ears were covered with a PST MTAM encapsulated with or without S.epidermidis in the presence of glycerol. The application of S.epidermidis-encapsulated PST MTAM plus glycerol onto the C.acnes-injected mouse ears considerably reduced the growth of C. acnes and the production of MIP-2. Furthermore, no S. epidermidis leaked from PSF MTAM into mouse skin. The S. epidermidis-encapsulated PST MTAM functions as a probiotic acne patch.