Project description:This clinical trial studies universal screening for deoxyribonucleic acid (DNA) mismatch repair deficiency in patients with endometrial cancer, mutations in the genes responsible for Lynch syndrome (inherited forms of endometrial cancers) and other DNA changes that could help guide treatment strategies. Universal tumor DNA sequencing may help doctors better understand how to personalize care, increase length of life, and increase quality of life in patients with endometrial cancer and their relatives.
| 2267967 | ecrin-mdr-crc
Project description:International Barcode of Life project (iBOL)
Project description:We investigated genome folding across the eukaryotic tree of life. We find four general manifestations of genome organization at chromosome-scale that each emerge and disappear repeatedly over the course of evolution. The submission represents chromosome-length Hi-C contact maps, architecture type and homolog separation analyses for 26 species across the tree of life, representing all subphyla of chordates, all 7 extant vertebrate classes, and 7 out of 9 major animal phyla, as well as plants and fungi.
Project description:HCC827 cells were barcoded using the ClonTracer lentiviral barcode library such that the majority of cells were infected with a single barcode. One million cells were expanded to ~120 million cells and split into 8 HYPERfasks. Two HYPERfasks were grown under DMSO and grown until confluence. In six HYPERfasks cells were grown under a GI90 concentration of one of two different inhibitors, gefitinib and trametinib (3 HYPERfasks each). Cells achieved confluence at 4 and 9 weeks for gefitinib and trametinib respectively. During this time, the medium and inhibitor were replenished weekly and DNA was extracted from the medium to track barcode content from dying cells.
Project description:To investigate immunoediting at the primary tumour, we used DNA barcoding combined with NGS. By stably integrating 4T1 murine cancer cell line with 250000 unique DNA barcodes (1 barcode per cell), we can trace how barcode (and therefore subclonal) diversity changes over time and after treatment with immunotherapy.
Project description:To investigate immunoediting at the primary tumour, we used DNA barcoding combined with NGS. By stably integrating 4T1 murine cancer cell line with 5000 unique DNA barcodes (1 barcode per cell), we can trace how barcode (and therefore subclonal) diversity changes over time and after treatment with immunotherapy.
Project description:To investigate immunoediting at the primary tumour, we used DNA barcoding combined with NGS. By stably integrating 4T1 murine cancer cell line with 5000 unique DNA barcodes (1 barcode per cell), we can trace how barcode (and therefore subclonal) diversity changes over time and after treatment with immunotherapy.
Project description:To investigate immunoediting at the primary tumour, we used DNA barcoding combined with NGS. By stably integrating 4T1 murine cancer cell line with 5000 unique DNA barcodes (1 barcode per cell), we can trace how barcode (and therefore subclonal) diversity changes over time and after treatment with immunotherapy.