Project description:This SuperSeries is composed of the following subset Series: GSE8570: Comparison of B. japonicum mutant strain Δ901 induced versus wild type uninduced GSE8571: Comparison of B. japonicum 110spc4 (wild type) induced versus uninduced GSE8572: Comparison of B. japonicum mutant strain 613 induced versus wild type uninduced Keywords: SuperSeries Refer to individual Series
Project description:The purpose of the study is to identify Irr-responsive genes in the bacterium Bradyrhizobium japonicum. Parent strain LO was compared to irr mutant strain LODTM5 by whole genome microarray analysis. Both cell types were grown in iron-limited media. Keywords: Comparison of B. japonicum wild type and mutant cells
Project description:Differential gene expression was analyzed between B. japonicum wild type (Bj110) and aceA mutant (BjΔaceA) exposed to desiccation stress to find AceA regulons under the culture condition.
Project description:Analysis of a Bradyrhizobium japonicum pmtA mutant. PmtA catalyzes the first of three consecutive methylation reactions leading to phosphatidylcholine (PC) formation in B. japonicum. Disruption of the pmtA gene results in a significantly reduced PC content causing a defect in symbiosis with the soybean host. This study provides the first insight into global transcriptomic changes of a bacterial phosphatidylcholine biosynthesis mutant. Cells of the pmtA mutant and the wild type were grown to mid-exponential phase in full medium (PSY) under aerobic culture conditions. Keywords: genetic modification Comparative analyis of the B. japonicum pmtA mutant and the wild type grown under aerobic culture conditions.
Project description:Analysis of a Bradyrhizobium japonicum pmtA mutant. PmtA catalyzes the first of three consecutive methylation reactions leading to phosphatidylcholine (PC) formation in B. japonicum. Disruption of the pmtA gene results in a significantly reduced PC content causing a defect in symbiosis with the soybean host. This study provides the first insight into global transcriptomic changes of a bacterial phosphatidylcholine biosynthesis mutant. Cells of the pmtA mutant and the wild type were grown to mid-exponential phase in full medium (PSY) under aerobic culture conditions. Keywords: genetic modification
Project description:The Bradyrhizobium japonicum NtrC regulatory protein influences gene expression in response to changes in intracellular nitrogen status. Under conditions of low nitrogen, phosphorylation of NtrC results in up-regulation of a number of genes involved in nitrogen metabolism and nitrogen acquisition. To better define the exact nature of NtrC’s influence on gene expression, a ntrC mutation was created in B. japonicum and transcriptional profiling was performed by DNA microarray analysis of both the mutant and wild type strains. Bradyrhizobium japonicum USDA 110 and a ntrC mutant in the USDA 110 background were cultured in minimal medium supplemented with either 10mM glutamate (low nitrogen) or 10mM ammonium and 10mM glutamate (high nitrogen) as nitrogen sources. Four comparisons were performed: wild type high nitrogen vs. mutant high nitrogen, wild type low nitrogen vs. wild type high nitrogen, wild type low nitrogen vs. mutant low nitrogen, and mutant low nitrogen vs. mutant high nitrogen. For each of the four comparisons, three biological replicates were prepared for each strain and dye swap replications were performed for each hybridization producing a total of six arrays per comparison and 24 arrays in total.
Project description:Expression data from B. japonicum bll2758::aphII strain (7414) grown micro-oxically. This study includes also the expression data of a fixK2 and a fixJ mutant grown in free-living micro-oxic condition (samples GSM313721 to GSM313734 in GEO record number GSE12491) and the wild type strain grown micro-oxically (samples GSM210246 to GSM210268 in GEO record number GSE8478).
Project description:The Bradyrhizobium japonicum NtrC regulatory protein influences gene expression in response to changes in intracellular nitrogen status. Under conditions of low nitrogen, phosphorylation of NtrC results in up-regulation of a number of genes involved in nitrogen metabolism and nitrogen acquisition. To better define the exact nature of NtrC’s influence on gene expression, a ntrC mutation was created in B. japonicum and transcriptional profiling was performed by DNA microarray analysis of both the mutant and wild type strains.