Project description:a chromosome-level nuclear genome and organelle genomes of the alpine snow alga Chloromonas typhlos were sequenced and assembled by integrating short- and long-read sequencing and proteogenomic strategy
2024-10-12 | PXD056928 |
Project description:Short read whole genome sequencing of Daphnia species
Project description:Nematodes encompass over 24,000 described species, which were discovered in almost every ecological habitat, and make up over 80% of metazoan taxonomic diversity in soils. The last common ancestor of nematodes is believed to date back to around 650–750 million years, generating a large and phylogenetically diverse group to be explored. However, for most species high quality gene annotations are incomprehensive or missing. Combining short-read RNA sequencing with mass spectrometry-based proteomics and machine learning quality control in an approach called proteotranscriptomics, we improve gene annotations for 9 genome-sequenced nematode species and provide new gene annotations for 3 additional species without genome assemblies. Emphasizing the sensitivity of our methodology, we provide evidence for two hitherto undescribed genes in the model organism Caenorhabditis elegans. Extensive phylogenetic systems analysis using this comprehensive proteome annotation provides new insights into evolutionary processes of this metazoan group.
Project description:The Periconia genus belongs to the phylum Ascomycota, order Pleosporales, family Periconiaceae. Periconia is widespread in many habitats but little is known about its ecology. Several species produce bioactive molecules, among them, Periconia digitata extracts were shown to be deadly active against the pine wilt nematode. The strain CNCM I-4278, here identified as P. digitata was able to inhibit the plant pathogen Phytophthora parasitica. Since P. digitata has great potential as biocontrol agent and the only other genome available in the Periconiaceae family is that of Periconia macrospinosa, which is quite fragmentary, we generated long-read genomic data for P. digitata. Thanks to the PacBio Hifi sequencing technology, we obtained a high-quality genome with a total length of 38,967,494 bp, represented by 13 haploid chromosomes. The transcriptomic and proteomic data strengthen and support the genome annotation. Besides representing a new reference genome within the Periconiaceae, this work will also contribute in our understanding of the Eukaryotic tree of life. Not least, opens new possibilities to the biotechnological use of the species.
Project description:The Periconia genus belongs to the phylum Ascomycota, order Pleosporales, family Periconiaceae. Periconia is widespread in many habitats but little is known about its ecology. Several species produce bioactive molecules, among them, Periconia digitata extracts were shown to be deadly active against the pine wilt nematode. The strain CNCM I-4278, here identified as P. digitata was able to inhibit the plant pathogen Phytophthora parasitica. Since P. digitata has great potential as biocontrol agent and the only other genome available in the Periconiaceae family is that of Periconia macrospinosa, which is quite fragmentary, we generated long-read genomic data for P. digitata. Thanks to the PacBio Hifi sequencing technology, we obtained a high-quality genome with a total length of 38,967,494 bp, represented by 13 haploid chromosomes. The transcriptomic and proteomic data strengthen and support the genome annotation. Besides representing a new reference genome within the Periconiaceae, this work will also contribute in our understanding of the Eukaryotic tree of life. Not least, opens new possibilities to the biotechnological use of the species.
Project description:We produced an extensive transcript catalog for LCLs of 5 primate species by leveraging isoform sequencing and short-read RNA-seq. The curated transcriptomes were used to assist mass spectrometry protein identifications.
Project description:Adenovirus is a common human pathogen that relies on host cell processes for transcription and processing of viral RNA and protein production. Although adenoviral promoters, splice junctions, and cleavage and polyadenylation sites have been characterized using low-throughput biochemical techniques or short read cDNA-based sequencing, these technologies do not fully capture the complexity of the adenoviral transcriptome. By combining Illumina short-read and nanopore long-read direct RNA sequencing approaches, we mapped transcription start sites and cleavage and polyadenylation sites across the adenovirus genome. In addition to confirming the known canonical viral early and late RNA cassettes, our analysis of splice junctions within long RNA reads revealed an additional 35 novel viral transcripts. These RNAs include fourteen new splice junctions which lead to expression of canonical open reading frames (ORF), six novel ORF-containing transcripts, and fifteen transcripts encoding for messages that potentially alter protein functions through truncations or fusion of canonical ORFs. In addition, we also detect RNAs that bypass canonical cleavage sites and generate potential chimeric proteins by linking separate gene transcription units. Of these, an evolutionary conserved protein was detected containing the N-terminus of E4orf6 fused to the downstream DBP/E2A ORF. Loss of this novel protein, E4orf6/DBP, was associated with aberrant viral replication center morphology and poor viral spread. Our work highlights how long-read sequencing technologies can reveal further complexity within viral transcriptomes.
Project description:Primary objectives: The primary objective is to investigate circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Primary endpoints: circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Project description:Objectives: To perform long-read transcriptome and proteome profiling of pathogen-stimulated peripheral blood mononuclear cells (PBMCs) from healthy donors. We aim to discover new transcripts and protein isoforms expressed during immune responses to diverse pathogens. Methods: PBMCs were exposed to four microbial stimuli for 24 hours: the TLR4 ligand lipopolysaccharide (LPS), the TLR3 ligand Poly(I:C), heat-inactivated Staphylococcus aureus, Candida albicans, and RPMI medium as negative controls. Long-read sequencing (PacBio) of one donor and secretome proteomics and short-read sequencing of five donors were performed. IsoQuant was used for transcriptome construction, Metamorpheus/FlashLFQ for proteome analysis, and Illumina short-read 3’-end mRNA sequencing for transcript quantification. Results: Long-read transcriptome profiling reveals the expression of novel sequences and isoform switching induced upon pathogen stimulation, including transcripts that are difficult to detect using traditional short-read sequencing. We observe widespread loss of intron retention as a common result of all pathogen stimulations. We highlight novel transcripts of NFKB1 and CASP1 that may indicate novel immunological mechanisms. In general, RNA expression differences did not result in differences in the amounts of secreted proteins. Interindividual differences in the proteome were larger than the differences between stimulated and unstimulated PBMCs. Clustering analysis of secreted proteins revealed a correlation between chemokine (receptor) expression on the RNA and protein levels in C. albicans- and Poly(I:C)-stimulated PBMCs. Conclusion: Isoform aware long-read sequencing of pathogen-stimulated immune cells highlights the potential of these methods to identify novel transcripts, revealing a more complex transcriptome landscape than previously appreciated.