Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:The TREM2-DAP12 receptor complex sustains microglia functions. Heterozygous TREM2 variants subtly impair microglia, facilitating manifestation of Alzheimer’s Disease in the elderly. Homozygous inactivating mutations of TREM2 or DAP12 cause Nasu-Hakola disease (NHD), an early-onset dementia with leukoencephalopathy, myelin loss and gliosis. Here we investigated the impact of DAP12 deficiency in microglia and collateral damage to other brain cells by single-nucleus RNA-seq in NHD patients and DAP12 loss-of-function (KΔ75) mice. KΔ75 mice showed signatures of impaired microglia activation that reverberated in mild dysfunction of other brain cells. Paradoxically, NHD microglia were activated and associated with astrocytosis, hypoxia, and neuronal loss signatures. We envision that KΔ75 signatures recapitulate an early NHD stage in which DAP12-deficient microglia fail to clear toxic products generated during brain development and homeostasis. Conversely, NHD signatures reflect a late disease stage in which accumulated toxic products cause a widespread tissue damage that elicits TREM2-DAP12-independent microgliosis, astrogliosis, hypoxia, and neuronal death. This TREM2-DAP12-independent microglia activation in NHD has bearing on potential microglia-based therapies.
Project description:The TREM2-DAP12 receptor complex sustains microglia functions. Heterozygous TREM2 variants subtly impair microglia, facilitating manifestation of Alzheimer’s Disease in the elderly. Homozygous inactivating mutations of TREM2 or DAP12 cause Nasu-Hakola disease (NHD), an early-onset dementia with leukoencephalopathy, myelin loss and gliosis. Here we investigated the impact of DAP12 deficiency in microglia and collateral damage to other brain cells by single-nucleus RNA-seq in NHD patients and DAP12 loss-of-function (KΔ75) mice. KΔ75 mice showed signatures of impaired microglia activation that reverberated in mild dysfunction of other brain cells. Paradoxically, NHD microglia were activated and associated with astrocytosis, hypoxia, and neuronal loss signatures. We envision that KΔ75 signatures recapitulate an early NHD stage in which DAP12-deficient microglia fail to clear toxic products generated during brain development and homeostasis. Conversely, NHD signatures reflect a late disease stage in which accumulated toxic products cause a widespread tissue damage that elicits TREM2-DAP12-independent microgliosis, astrogliosis, hypoxia, and neuronal death. This TREM2-DAP12-independent microglia activation in NHD has bearing on potential microglia-based therapies.
Project description:Translational research is commonly performed in the C57B6/J mouse strain, chosen for its genetic homogeneity and phenotypic uniformity. Here, we evaluate the suitability of the white-footed deer mouse (Peromyscus leucopus) as a model organism for aging research, offering a comparative analysis against C57B6/J and diversity outbred (DO) Mus musculus strains. Our study includes comparisons of body composition, skeletal muscle function, and cardiovascular parameters, shedding light on potential applications and limitations of P. leucopus in aging studies. Notably, P. leucopus exhibits distinct body composition characteristics, emphasizing reduced muscle force exertion and a unique metabolism, particularly in fat mass. Cardiovascular assessments showed changes in arterial stiffness, challenging conventional assumptions and highlighting the need for a nuanced interpretation of aging-related phenotypes. Our study also highlights inherent challenges associated with maintaining and phenotyping P. leucopus cohorts. Behavioral considerations, including anxiety-induced responses during handling and phenotyping assessment, pose obstacles in acquiring meaningful data. Moreover, the unique anatomy of P. leucopus necessitates careful adaptation of protocols designed for Mus musculus. While showcasing potential benefits, further extensive analyses across broader age ranges and larger cohorts are necessary to establish the reliability of P. leucopus as a robust and translatable model for aging studies.
Project description:Engrams are considered to be substrates for memory storage, and the functional dysregulation of the engrams leads to cognition impairment.However, the cellular basis for these maladaptive changes lead to the forgetting of memories remains unclear. Here we found that the expression of autophagy protein 7 (Atg7) mRNA was dramatically upregulated in aged DG engrams, and led to the forgetting of contextual fear memory and the activation of surrounding microglia.To determine mechanism by which autophagy in DG engrams activates the surrounding microglia, mice were co-injected AAV-RAM-Cre either with AAV-Dio-Atg7-Flag or AAV-Dio- EYFP in dorsal dentate gyrus to overexpress ATG7 in the DG memory engrams. Microglia were separated using magnetic-activated cell sorting and subjected to RNA-Seq in dorsal hippocampus .Bioinformatics analysis shown overexpression of Atg7 in dorsal DG memory engrams caused an increase in the expression of Tlr2 in the surrounding microglia.Depletion of Toll-like receptor 2/4 (TLR2/4) in DG microglia prohibited excessive microglial activation and synapse elimination induced by the overexpression of ATG7 in DG engrams, and thus prevented forgetting. Furthermore, the expression of Rac1, a Rho-GTPases which regulates active forgetting in both fly and mice, was upregulated in aged engrams. Optogentic activation of Rac1 in DG engrams promoted the autophagy of the engrams, the activation of microglia, and the forgetting of fear memory. Invention of the Atg7 expression and microglia activation attenuated forgetting induced by activation of Rac1 in DG engrams. Together, our findings revealed autophagy-dependent synapse elimination of DG engrams by microglia as a novel forgetting mechanism.
Project description:Microglia colonize the brain parenchyma at early stages of development and accumulate in specific regions where they actively participate in cell death, angiogenesis, neurogenesis and synapse elimination. A recurring feature of embryonic microglial distribution is their association with developing axon tracts which, together with in vitro data, supports the idea of a physiological role for microglia in neurite development. Yet the demonstration of this role of microglia is still lacking. Here, we have studied the consequences of microglial dysfunction on the formation of the corpus callosum, the largest connective structure in the mammalian brain, which shows consistent microglial accumulation during development. We studied two models of microglial dysfunction: the loss-of-function of DAP12, a key microglial-specific signaling molecule, and a model of maternal inflammation by peritoneal injection of LPS at E15.5. We performed transcriptional profiling of maternally inflamed and Dap12-mutant microglia at E17.5. We found that both treatments principally down-regulated genes involved in nervous system development and function, particularly in neurite formation. We then analyzed the functional consequences of these microglial dysfunctions on the formation of the corpus callosum. We also took advantage of the Pu.1-/- mouse line, which is devoid of microglia. We now show that all three models of altered microglial activity resulted in the same defasciculation phenotype. Our study demonstrates that microglia are actively involved in the fasciculation of corpus callosum axons. To investigate possible roles for microglial during brain development, we challenged microglial function by two complementary approaches. First, we induced maternal inflammation by peritoneal injection of LPS into pregnant dams. Next, we analyzed the consequences of a loss of function of DAP12, a signaling molecule specifically expressed in microglia that is crucial for several aspects of microglia biology (references in Wakselman et al., 2008). We compared the gene expression profiles of microglia from control, maternally-inflamed by LPS (MI), and Dap12-mutated embryos. We isolated RNA from FACS sorted maternally inflamed (by LPS) and Dap12-mutant microglia at E17.5 pooled per pregnant dam; as a control we included PBS treated and untreated (UT) microglia. We compared gene expression between maternally inflamed microlgia (PBSvsLPS) and DAP12-mutant microglia (UTvsDAP12KO).
Project description:This SuperSeries is composed of the following subset Series: GSE9043: Dap12 microglia GSE9061: Dap12-deficient mouse brain (1 month) Keywords: SuperSeries Refer to individual Series
Project description:BackgroundCopy number variation is an important dimension of genetic diversity and has implications in development and disease. As an important model organism, the mouse is a prime candidate for copy number variant (CNV) characterization, but this has yet to be completed for a large sample size. Here we report CNV analysis of publicly available, high-density microarray data files for 351 mouse tail samples, including 290 mice that had not been characterized for CNVs previously.ResultsWe found 9634 putative autosomal CNVs across the samples affecting 6.87% of the mouse reference genome. We find significant differences in the degree of CNV uniqueness (single sample occurrence) and the nature of CNV-gene overlap between wild-caught mice and classical laboratory strains. CNV-gene overlap was associated with lipid metabolism, pheromone response and olfaction compared to immunity, carbohydrate metabolism and amino-acid metabolism for wild-caught mice and classical laboratory strains, respectively. Using two subspecies of wild-caught Mus musculus, we identified putative CNVs unique to those subspecies and show this diversity is better captured by wild-derived laboratory strains than by the classical laboratory strains. A total of 9 genic copy number variable regions (CNVRs) were selected for experimental confirmation by droplet digital PCR (ddPCR).ConclusionThe analysis we present is a comprehensive, genome-wide analysis of CNVs in Mus musculus, which increases the number of known variants in the species and will accelerate the identification of novel variants in future studies.
Project description:BackgroundLong terminal repeat (LTR) retrotransposons make up a large fraction of the typical mammalian genome. They comprise about 8% of the human genome and approximately 10% of the mouse genome. On account of their abundance, LTR retrotransposons are believed to hold major significance for genome structure and function. Recent advances in genome sequencing of a variety of model organisms has provided an unprecedented opportunity to evaluate better the diversity of LTR retrotransposons resident in eukaryotic genomes.ResultsUsing a new data-mining program, LTR_STRUC, in conjunction with conventional techniques, we have mined the GenBank mouse (Mus musculus) database and the more complete Ensembl mouse dataset for LTR retrotransposons. We report here that the M. musculus genome contains at least 21 separate families of LTR retrotransposons; 13 of these families are described here for the first time.ConclusionsAll families of mouse LTR retrotransposons are members of the gypsy-like superfamily of retroviral-like elements. Several different families of unrelated non-autonomous elements were identified, suggesting that the evolution of non-autonomy may be a common event. High sequence similarity between several LTR retrotransposons identified in this study and those found in distantly-related species suggests that horizontal transfer has been a significant factor in the evolution of mouse LTR retrotransposons.