Project description:A healthy rumen is crucial for normal growth and improved production performance of ruminant animals. Rumen microbes participate in and regulate rumen epithelial function, and the diverse metabolites produced by rumen microbes are important participants in rumen microbe-host interactions. SCFAs, as metabolites of rumen microbes, have been widely studied, and propionate and butyrate have been proven to promote rumen epithelial cell proliferation. Succinate, as an intermediate metabolite in the citric acid cycle, is a final product in the metabolism of certain rumen microbes, and is also an intermediate product in the microbial synthesis pathway of propionate. However, its effect on rumen microbes and rumen epithelial function has not been studied. It is unclear whether succinate can stimulate rumen epithelial development. Therefore, in this experiment, Chinese Tan sheep were used as experimental animals to conduct a comprehensive analysis of the rumen microbiota community structure and rumen epithelial transcriptome, to explore the role of adding succinate to the diet in the interaction between the rumen microbiota and host.
Project description:Rumen epithelial parakeratosis, a common disease in ruminants caused by abnormalities in the ruminal stratified squamous epithelial keratinization process, negatively impacts ruminant health and performance. While we still lack a comprehensive perception of the underlying mechanisms and the predisposing factors for this disorder.Here, we investigated rumen epithelial cell heterogeneity, differentiation trajectories, and cornification to clarify the rumen epithelial keratinization process
Project description:As the unique organ, rumen plays vital roles in providing products for humans, however, the underlying cell composition and interactions with epithelium-attached microbes remain largely unknown. Herein, we performed an integrated analysis in single-cell transcriptome, epithelial microbiome, and metabolome of rumen tissues to explore the differences of microbiota-host crosstalk between newborn and adult cattle models. We found that fewer epithelial cell subtypes and more abundant immune cells (e.g., Th17 cells) in the rumen tissue of adult cattle. Metabolism-related functions and oxidation-reduction process were significantly upregulated in the adult rumen epithelial cell subtypes. The epithelial Desulfovibrio was significantly enriched in the adult cattle. To further clarify the role of Desulfovibrio in host’s oxidation-reduction process, we performed metabolomics analysis of rumen tissues and found that Desulfovibrio showed a high co-occurrence probability with the pyridoxal in the adult cattle compared with newborn ones. The adult rumen epithelial cell subtypes also showed stronger ability of pyridoxal binding. These indicates that Desulfovibrio and pyridoxal likely play important roles in maintaining redox balance in adult rumen. The integrated analysis provides novel insights into the understanding of rumen function and facilitate the future precision improvement of rumen function and milk/meat production in cattle.
Project description:We performed single-cell RNA-sequencing on the rumen epithelium of dairy cows to construct an epithelial single-cell map of the rumen.
Project description:Comprehensive analyses of tissues at single-cell level will benefit our understanding of genetic bases for complex traits. Here we present an initial effort of single-cell transcriptomic analyses of cattle ruminal epithelial cells during the rumen development. We obtained 5064 and 1372 cells from Holstein ruminal epithelial cells before and after weaning, respectively. We reported 6 cell types across their temporal and spatial distributions, which were partially correlated with rumen epithelium layer’s structures and functions. We also reported a distinct sets of cell markers for these cell types, for example, CRA1, HMMR, MKI67, and EZH2 for the dividing epithelial cells and the TGFB pathway and the keratin gene family for keratinized epithelial cells. Our proposed a cell lineage model may contribute to the understanding of cattle rumen epithelial proliferation and development.