Project description:Tree peony (Paeonia ostii section Moutan DC.) is known for its excellent ornamental and medicinal values. In 2011, seeds from P. ostii have been identified as novel resource of alpha-linolenic acid (ALA) for seed oil production and development in China. However, the molecular mechanism on biosynthesis of unsaturated fatty acids in tree peony seeds remains unknown. Therefore, transcriptome data is needed to better understand the underlying mechanisms. In this study, lipids accumulation contents were measured using GC-MS methods across developing tree peony seeds, which exhibited an extraordinary ALA content (49.3%) in P. ostii mature seeds. Transcriptome analysis was performed using Illumina sequencing platform. A total of 144 million 100-bp paired-end reads were generated from six libraries, which identified 175,874 contigs. In the KEGG Orthology enrichment of differentially expressed genes, lipid metabolism pathways were highly represented categories. Using this data we identified 388 unigenes that may be involved in de novo fatty acid and triacylglycerol biosynthesis. In particular, three unigenes (SAD, FAD2 and FAD8) encoding fatty acid desaturase with high expression levels in the fast oil accumulation stage compared with the initial stage of seed development were identified.
Project description:To better understanding the genetic and physiological changes behind the dormancy process in tree peony, we performed customized cDNA microarray to investigate gene expression profiling in tree peony ‘Feng Dan Bai’ buds during chilling induced dormancy release. Endo-dormant tree peony plants were exposed to 0-4°C from 5 November to 30 December 2009 in Qingdao, Shandong, China. Buds were collected after 0 d, 6 d, 12 d, 15 d, 18 d and 24 d chilling endured. DNA microarrays were customized using Agilent eArray 5.0 program, containing spots with 14,957 gene-specific 60-mer oligonucleotides representing 14,957 non abundant ESTs obtained from 454 sequencing normalized cDNA of tree peony buds during chilling duration (TSA, 65,217). Total 3,174 significantly differentially-expressed genes (P<0.05) were observed through endo-dormancy release, and the number of up-regulated (1,611) and that of down-regulated (1,563) was almost same. Expression of differentially-expressed genes associated with GA biosynthesis and signaling, cell growth and development was confirmed by quantitative RT-PCR, which displayed similar trends pattern in expression.
Project description:To better understanding the genetic and physiological changes behind the dormancy process in tree peony, we performed customized cDNA microarray to investigate gene expression profiling in tree peony M-bM-^@M-^XFeng Dan BaiM-bM-^@M-^Y buds during chilling induced dormancy release. Endo-dormant tree peony plants were exposed to 0-4M-BM-0C from 5 November to 30 December 2009 in Qingdao, Shandong, China. Buds were collected after 0 d, 6 d, 12 d, 15 d, 18 d and 24 d chilling endured. DNA microarrays were customized using Agilent eArray 5.0 program, containing spots with 14,957 gene-specific 60-mer oligonucleotides representing 14,957 non abundant ESTs obtained from 454 sequencing normalized cDNA of tree peony buds during chilling duration (TSA, 65,217). Total 3,174 significantly differentially-expressed genes (P<0.05) were observed through endo-dormancy release, and the number of up-regulated (1,611) and that of down-regulated (1,563) was almost same. Expression of differentially-expressed genes associated with GA biosynthesis and signaling, cell growth and development was confirmed by quantitative RT-PCR, which displayed similar trends pattern in expression. Transcript profiling of tree peony was measured during chilling (0-4M-BM-0C) induced dormancy release. Mixed buds, three buds for each individual, were collected after 0, 6, 12, 15, 18 (endo-dormancy release), 24 days (eco-dormancy) chilling requirement fulfilling. Three replications (3 plants/ replication) were harvested between November and December.
Project description:We conducted micro-array analysis to quantify the global transcriptome variations in floral organs of a male and female tree allowing for identification of sex-linked transcripts. We used RNA samples from male floral buds in August and female floral buds in September. Bud scale were removed. While the sampling time differed, the developmental stage of the floral organs was similar between the male and female. Five independent samples of floral bud tissues with bud scales removes were collected from the upper crown of a sexually mature male tree and female tree. RNA was extracted from tissues and hybridized on Affymetrix Genechip Poplar Genome Array.
Project description:We conducted micro-array analysis to quantify the global transcriptome variations in floral buds through the course of the year allowing for identification of changing developmental signals. We used RNA samples from floral buds, with bud scale removed, in the upper crown of a sexually mature Populus deltoides tree 2 hours after sunrise. Three independent samples of floral bud tissues with bud scales removes were collected from the upper crown of a single sexually mature male tree. RNA was extracted from tissues and hybridized on Affymetrix Genechip Poplar Genome Array.
Project description:The transition from vegetative to reproductive development is one of the most important phase changes in the plant life cycle. This step is controlled by various environmental signals that are integrated at the molecular level by so-called floral integrators. One such floral integrator in Arabidopsis (Arabidopsis thaliana) is the MADS domain transcription factor SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1). Despite extensive genetic studies, little is known about the transcriptional control of SOC1, and we are just starting to explore the network of genes under the direct control of SOC1 transcription factor complexes. Here, we show that several MADS domain proteins, including SOC1 heterodimers, are able to bind SOC1 regulatory sequences. Genome-wide target gene analysis by ChIP-seq confirmed the binding of SOC1 to its own locus and shows that it also binds to a plethora of flowering-time regulatory and floral homeotic genes. In turn, the encoded floral homeotic MADS domain proteins appear to bind SOC1 regulatory sequences. Subsequent in planta analyses revealed SOC1 repression by several floral homeotic MADS domain proteins, and we show that, mechanistically, this depends on the presence of the SOC1 protein. Together, our data show that SOC1 constitutes a major hub in the regulatory networks underlying floral timing and flower development and that these networks are composed of many positive and negative autoregulatory and feedback loops. The latter seems to be crucial for the generation of a robust flower-inducing signal, followed shortly after by repression of the SOC1 floral integrator. A. thaliana SOC1 ChIP-seq w. control, 3 replicates
Project description:The floral transition in Arabidopsis is tightly controlled by complex genetic regulatory networks in response to endogenous and environmental flowering signals. SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) and SHORT VEGETATIVE PHASE (SVP), two key MADS-domain transcription factors, perceive these signals and function as antagonistic flowering regulators. To understand how they mediate the floral transition, we mapped in vivo binding sites of SOC1 and SVP using chromatin immunoprecipitation followed by hybridization to whole-genome tiling arrays (ChIP-chip). Genes encoding proteins with transcription regulator activity and transcription factor activity were the most enriched groups of genes bound by SOC1 and SVP, indicating their central roles in flowering regulatory networks. In combination with gene expression microarray studies, we further identified the genes whose expression was directly regulated by SOC1 or SVP. Among the common direct targets identified, APETALA2 (AP2)-like genes that repress FT and SOC1 expression were downregulated by SOC1, but upregulated by SVP, revealing a complex feedback regulation among key genes determining the integration of flowering signals. SOC1 regulatory regions were also accessed by SOC1 itself and SVP, suggesting that self-activation and repression by SVP contribute to the regulation of SOC1 expression. In addition, ChIP-chip analysis demonstrated that miR156e and miR172a, which are involved in the regulation of AP2-like genes, were direct targets of SOC1 and SVP, respectively. Taken together, these findings reveal that feedback regulatory loops mediated by SOC1 and SVP are essential components of the gene regulatory networks underpinning the integration of flowering signals during the floral transition.