Project description:The outbreak-causing monkeypox virus of 2022 (2022 MPXV) is classified as a clade IIb strain and phylogenetically distinct from prior endemic MPXV strains (clades I or IIa), suggesting that its virological properties may also differ. Here, we used human keratinocytes and induced pluripotent stem cell-derived colon organoids to examine the efficiency of viral growth in these cells and the MPXV infection-mediated host responses. MPXV replication was much more productive in keratinocytes than in colon organoids. We observed that MPXV infections, regardless of strain, caused cellular dysfunction and mitochondrial damage in keratinocytes. Notably, a significant increase in the expression of hypoxia-related genes was observed specifically in 2022 MPXV-infected keratinocytes. Our comparison of virological features between 2022 MPXV and prior endemic MPXV strains revealed signaling pathways potentially involved with the cellular damages caused by MPXV infections and highlights host vulnerabilities that could be utilized as protective therapeutic strategies against human mpox in the future.
Project description:Paired-end sequencing study of (1) nucleosome core particles and under-digested chromatin from MNase-treated nuclei; (2) ChIP samples for HA-tagged histone H4 and H2B; (3) ChIP for the Rpb3 subunit of Pol II.
Project description:Paired-end sequencing study of (1) nucleosome core particles and under-digested chromatin from MNase-treated nuclei; (2) ChIP samples for HA-tagged histone H4 and H2B; (3) ChIP for the Rpb3 subunit of Pol II. Nucleosomal DNA and immunopurified sonicated DNA fragments were subjected to paired-end sequencing.
Project description:In this study we provide evidence that Hsp90 binds chromatin at specific sites close to several TSS in Drosophila S2 cell line. In addition of finding a preference for stalled promoter regions of annotated genes, we uncover many intergenic Hsp90 binding sites coinciding with non-annotated transcription start sites. Interestingly, this set includes promoters for primary transcripts of microRNA genes, thereby expanding the scope of Hsp90 to transcriptional control of many genes. We finally conclude that Hsp90 contacts NelfE and thus regulates pol II pausing. Our Dataset comprises of 1 ChIP-seq sample using chromatin from S2 cells which was immunoprecipitated, using antibodies against Drosophila Hsp90. The two biological replicates are submitted along with the input replicates.