Project description:Microsporidia have attracted much attention because they infect a variety of species ranging from protists to mammals, including immunocompromised patients with AIDS or cancer. Aside from the study on Nosema ceranae, few works have focused on elucidating the mechanism in host response to microsporidia infection. Nosema bombycis is a pathogen of silkworm pM-CM-)brine that causes great economic losses to the silkworm industry. Detailed understanding of the host (Bombyx mori) response to infection by N. bombycis is helpful for prevention of this disease. The 23 K silkworm genome array was used to investigate host responses (i.e., Bombyx mori) occurring at 2, 4, 6 and 8 d post-infection by Nosema bombycis.We focused on elucidating the mechanism of the host response to microsporidia infection, especially for the investigation of host immune response . The third instar molted silkworm larvae were in oral infected by Nosema bombycis. In order to known the silkworm host response to Nosema bombycis infection at different time points, samples of infected larvae (i.e., the treatment set) and uninfected larvae (i.e., the control set) were collected at 2, 4, 6 and 8 dpi for RNA extraction and array hybridization. The obtained data were usd to investigate on the interplay of the genome-wide expression profile of hosts.
Project description:Microsporidia have attracted much attention because they infect a variety of species ranging from protists to mammals, including immunocompromised patients with AIDS or cancer. Aside from the study on Nosema ceranae, few works have focused on elucidating the mechanism in host response to microsporidia infection. Nosema bombycis is a pathogen of silkworm pébrine that causes great economic losses to the silkworm industry. Detailed understanding of the host (Bombyx mori) response to infection by N. bombycis is helpful for prevention of this disease. The 23 K silkworm genome array was used to investigate host responses (i.e., Bombyx mori) occurring at 2, 4, 6 and 8 d post-infection by Nosema bombycis.We focused on elucidating the mechanism of the host response to microsporidia infection, especially for the investigation of host immune response .
Project description:Uric acid (UA) is the final product of purine metabolism and plays an important role as a physiological antioxidant. In recent years, several different groups have reported a correlation between decreased UA in Parkinson’s disease (PD) and clinical progression and stage of PD. However, little is known about the molecular mechanisms of decreased UA under oxidative stress. We used our systematic functional annotation pipeline for silkworm genes to identify a novel UA metabolic pathway regulator under oxidative stress in a UA metabolism mutant silkworm Bombyx mori model. Gene expression was measured in 3day of fifth instar larvae of abnormal uric acid synthesis Bombyx mori mutant of op.