Project description:Although HIV-1 integration sites are considered to favor active transcription units in the human genome, high-resolution analysis of individual HIV-1 integration sites have shown that the virus can integrate in a variety of host genomic locations, including non-genic regions, challenging the traditional understanding of HIV-1 integration site selection. Here, we showed that HIV-1 targets R-loops, a genomic structure made up of DNA–RNA hybrids, for integration. HIV-1 initiates the formation of R-loops in both genic and non-genic regions of the host genome and preferentially integrates into regions of HIV-1-induced R-loops. Using a cell model that can independently control transcriptional activity and R-loop formation, we demonstrated that the presence of R-loops, regardless of transcriptional activity, directs HIV-1 integration targeting sites. We also found that HIV-1 integrase proteins bind to the host genomic R-loops. These findings provide fundamental insights into the mechanisms of retroviral integration and the new strategies of antiretroviral therapy against HIV-1 latent infection.
Project description:Although HIV-1 integration sites are considered to favor active transcription units in the human genome, high-resolution analysis of individual HIV-1 integration sites have shown that the virus can integrate in a variety of host genomic locations, including non-genic regions, challenging the traditional understanding of HIV-1 integration site selection. Here, we showed that HIV-1 targets R-loops, a genomic structure made up of DNA–RNA hybrids, for integration. HIV-1 initiates the formation of R-loops in both genic and non-genic regions of the host genome and preferentially integrates into regions of HIV-1-induced R-loops. Using a cell model that can independently control transcriptional activity and R-loop formation, we demonstrated that the presence of R-loops, regardless of transcriptional activity, directs HIV-1 integration targeting sites. We also found that HIV-1 integrase proteins bind to the host genomic R-loops. These findings provide fundamental insights into the mechanisms of retroviral integration and the new strategies of antiretroviral therapy against HIV-1 latent infection.
Project description:Although HIV-1 integration sites are considered to favor active transcription units in the human genome, high-resolution analysis of individual HIV-1 integration sites have shown that the virus can integrate in a variety of host genomic locations, including non-genic regions, challenging the traditional understanding of HIV-1 integration site selection. Here, we showed that HIV-1 targets R-loops, a genomic structure made up of DNA–RNA hybrids, for integration. HIV-1 initiates the formation of R-loops in both genic and non-genic regions of the host genome and preferentially integrates into regions of HIV-1-induced R-loops. Using a cell model that can independently control transcriptional activity and R-loop formation, we demonstrated that the presence of R-loops, regardless of transcriptional activity, directs HIV-1 integration targeting sites. We also found that HIV-1 integrase proteins bind to the host genomic R-loops. These findings provide fundamental insights into the mechanisms of retroviral integration and the new strategies of antiretroviral therapy against HIV-1 latent infection.
Project description:HIV-1 integration introduces ectopic transcription factor binding sites into host chromatin. We postulate that the integrated provirus serves as an ectopic enhancer that recruits additional transcriptional factors to the integration locus, increases chromatin accessibility, changes 3D chromatin interactions, and enhances both retroviral and host gene expression. We used 4 well-characterized HIV-1-infected cell line clones having unique integration sites and low to high levels of HIV-1 expression. Using single-cell DOGMA-seq, which captured the heterogeneity of HIV-1 expression and host chromatin accessibility, we found that HIV-1 transcription correlated with HIV-1 accessibility and host chromatin accessibility. HIV-1 integration increased local host chromatin accessibility within ~5–30 kb distance. CRISPRa and CRISPRi-mediated HIV-1 promoter activation and inhibition confirmed integration site-dependent HIV-1-driven changes of host chromatin accessibility. HIV-1 did not drive chromatin confirmation changes at the genomic level (by Hi-C) or the enhancer connectome (by H3K27Ac HiChIP). Using 4C-seq to interrogate HIV-1-chromatin interactions, we found that HIV-1 interacted with host chromatin ~100–300 kb from the integration site. By identifying chromatin regions having both increased transcription factor activity (by ATAC-seq) and HIV-1-chromtain interaction (by 4C-seq), we identified enrichment of ETS, RUNT, STAT, and ZNF transcription factor binding that may mediate HIV-1-host chromatin interactions. Our study found that HIV-1 promoter activity increased host chromatin accessibility, increased HIV-1-host chromatin interactions in an integration site dependent manner, within the existing chromatin boundaries without impacting broader host chromatin structure.
Project description:Retroviral integration is mediated by a unique enzymatic process shared by all retroviruses and retrotransposons. During integration, double-stranded linear viral DNA is inserted into the host genome in a process catalyzed by viral-encoded integrase. However, host cell defenses against HIV-1 integration are not clear. This study identifies -catenin-like protein 1 (CTNNBL1) as a potent inhibitor of HIV-1 integration via association with viral IN and its cofactor, lens epithelium-derived growth factor/p75. CTNNBL1 overexpression blocks HIV-1 integration and inhibits viral replication, whereas CTNNBL1 depletion significantly upregulates HIV-1 integration into the genome of various target cells. Further, CTNNBL1 expression is downregulated in CD4+ T cells by activation, and CTNNBL1 depletion also facilitates HIV-1 integration in resting CD4+ T cells. Thus, host cells may employ CTNNBL1 to inhibit HIV-1 integration into the genome. This finding suggests a strategy for the treatment of HIV infections.
Project description:HIV-1 integration introduces ectopic transcription factor binding sites into host chromatin. We postulate that the integrated provirus serves as an ectopic enhancer that recruits additional transcriptional factors to the integration locus, increases chromatin accessibility, changes 3D chromatin interactions, and enhances both retroviral and host gene expression. We used 4 well-characterized HIV-1-infected cell line clones having unique integration sites and low to high levels of HIV-1 expression. Using single-cell DOGMA-seq, which captured the heterogeneity of HIV-1 expression and host chromatin accessibility, we found that HIV-1 transcription correlated with HIV-1 accessibility and host chromatin accessibility. HIV-1 integration increased local host chromatin accessibility within ~5–30 kb distance. CRISPRa and CRISPRi-mediated HIV-1 promoter activation and inhibition confirmed integration site-dependent HIV-1-driven changes of host chromatin accessibility. HIV-1 did not drive chromatin confirmation changes at the genomic level (by Hi-C) or the enhancer connectome (by H3K27Ac HiChIP). Using 4C-seq to interrogate HIV-1-chromatin interactions, we found that HIV-1 interacted with host chromatin ~100–300 kb from the integration site. By identifying chromatin regions having both increased transcription factor activity (by ATAC-seq) and HIV-1-chromtain interaction (by 4C-seq), we identified enrichment of ETS, RUNT, STAT, and ZNF transcription factor binding that may mediate HIV-1-host chromatin interactions. Our study found that HIV-1 promoter activity increased host chromatin accessibility, increased HIV-1-host chromatin interactions in an integration site dependent manner, within the existing chromatin boundaries without impacting broader host chromatin structure.
Project description:HIV-1 integration introduces ectopic transcription factor binding sites into host chromatin. We postulate that the integrated provirus serves as an ectopic enhancer that recruits additional transcriptional factors to the integration locus, increases chromatin accessibility, changes 3D chromatin interactions, and enhances both retroviral and host gene expression. We used 4 well-characterized HIV-1-infected cell line clones having unique integration sites and low to high levels of HIV-1 expression. Using single-cell DOGMA-seq, which captured the heterogeneity of HIV-1 expression and host chromatin accessibility, we found that HIV-1 transcription correlated with HIV-1 accessibility and host chromatin accessibility. HIV-1 integration increased local host chromatin accessibility within ~5–30 kb distance. CRISPRa and CRISPRi-mediated HIV-1 promoter activation and inhibition confirmed integration site-dependent HIV-1-driven changes of host chromatin accessibility. HIV-1 did not drive chromatin confirmation changes at the genomic level (by Hi-C) or the enhancer connectome (by H3K27Ac HiChIP). Using 4C-seq to interrogate HIV-1-chromatin interactions, we found that HIV-1 interacted with host chromatin ~100–300 kb from the integration site. By identifying chromatin regions having both increased transcription factor activity (by ATAC-seq) and HIV-1-chromtain interaction (by 4C-seq), we identified enrichment of ETS, RUNT, STAT, and ZNF transcription factor binding that may mediate HIV-1-host chromatin interactions. Our study found that HIV-1 promoter activity increased host chromatin accessibility, increased HIV-1-host chromatin interactions in an integration site dependent manner, within the existing chromatin boundaries without impacting broader host chromatin structure.
Project description:HIV-1 integration introduces ectopic transcription factor binding sites into host chromatin. We postulate that the integrated provirus serves as an ectopic enhancer that recruits additional transcriptional factors to the integration locus, increases chromatin accessibility, changes 3D chromatin interactions, and enhances both retroviral and host gene expression. We used 4 well-characterized HIV-1-infected cell line clones having unique integration sites and low to high levels of HIV-1 expression. Using single-cell DOGMA-seq, which captured the heterogeneity of HIV-1 expression and host chromatin accessibility, we found that HIV-1 transcription correlated with HIV-1 accessibility and host chromatin accessibility. HIV-1 integration increased local host chromatin accessibility within ~5–30 kb distance. CRISPRa and CRISPRi-mediated HIV-1 promoter activation and inhibition confirmed integration site-dependent HIV-1-driven changes of host chromatin accessibility. HIV-1 did not drive chromatin confirmation changes at the genomic level (by Hi-C) or the enhancer connectome (by H3K27Ac HiChIP). Using 4C-seq to interrogate HIV-1-chromatin interactions, we found that HIV-1 interacted with host chromatin ~100–300 kb from the integration site. By identifying chromatin regions having both increased transcription factor activity (by ATAC-seq) and HIV-1-chromtain interaction (by 4C-seq), we identified enrichment of ETS, RUNT, STAT, and ZNF transcription factor binding that may mediate HIV-1-host chromatin interactions. Our study found that HIV-1 promoter activity increased host chromatin accessibility, increased HIV-1-host chromatin interactions in an integration site dependent manner, within the existing chromatin boundaries without impacting broader host chromatin structure.
Project description:HIV-1 encounters the hierarchically organized host chromatin to stably integrate and persist in anatomically distinct latent reservoirs. The contribution of genome organization in HIV-1 infection has been largely understudied across different HIV-1 targets. Here we determine HIV-1 integration sites (IS), associate them to chromatin and expression signatures at different genomic scales in a microglia cell model and profile them together with the primary T cell reservoir. HIV-1 insertions into introns of actively transcribed genes with IS hotspots in genic- and super-enhancers, characteristic of blood cells, are maintained in the microglia cell model. Genome organization analysis reveals dynamic CCCTC-binding factor (CTCF) clusters in cells with active and repressed HIV-1 transcription, while CTCF removal impairs viral integration. We identify CTCF-enriched topologically associated domain (TAD) boundaries with signatures of transcriptionally active chromatin as HIV-1 integration determinant in microglia and CD4+ T cells, highlighting the importance of the host genome organization in HIV-1 infection.
Project description:We performed ChIP-seq in a microglia cell line (C20) to understand integration patterns of HIV-1. We characterised the uninfected epigenetic cellular landscape in order to assess how integration is affected by distinct chromatin states and to understand the features defining integration-permissible regions.