Project description:Origins of the brain tumor, medulloblastoma, from stem cells or restricted pro-genitor cells are unclear. To investigate this, we activated oncogenic Hedgehog signaling in multipotent and lineage-restricted CNS progenitors. We observed that normal unipo-tent cerebellar granule neuron precursors (CGNP) derive from hGFAP+ and Olig2+ rhombic lip progenitors. Hedgehog activation in a spectrum of early and late stage CNS progenitors generated similar medulloblastomas, but not other brain cancers, indicating that acquisition of CGNP identity is essential for tumorigenesis. We show in human and mouse medulloblastoma that cells expressing the glia-associated markers Gfap and Olig2 are neoplastic and that they retain features of embryonic-type granule lineage progenitors. Thus, oncogenic Hedgehog signaling promotes medulloblastoma from lineage-restricted granule cell progenitors. Gene expression profiling of cerebellar tumors generated from various early and late stage CNS progenitor cells. Experiment Overall Design: Group comparisons with biological replicates
Project description:Origins of the brain tumor, medulloblastoma, from stem cells or restricted pro-genitor cells are unclear. To investigate this, we activated oncogenic Hedgehog signaling in multipotent and lineage-restricted CNS progenitors. We observed that normal unipo-tent cerebellar granule neuron precursors (CGNP) derive from hGFAP+ and Olig2+ rhombic lip progenitors. Hedgehog activation in a spectrum of early and late stage CNS progenitors generated similar medulloblastomas, but not other brain cancers, indicating that acquisition of CGNP identity is essential for tumorigenesis. We show in human and mouse medulloblastoma that cells expressing the glia-associated markers Gfap and Olig2 are neoplastic and that they retain features of embryonic-type granule lineage progenitors. Thus, oncogenic Hedgehog signaling promotes medulloblastoma from lineage-restricted granule cell progenitors. Gene expression profiling of cerebellar tumors generated from various early and late stage CNS progenitor cells.
Project description:Medulloblastoma encompasses a collection of clinically and molecularly diverse tumor subtypes that together comprise the most common malignant childhood brain tumor. These tumors are thought to arise within the cerebellum, with approximately 25% originating from granule neuron precursor cells (GNPCs) following aberrant activation of the Sonic Hedgehog pathway (hereafter, SHH-subtype). The pathological processes that drive heterogeneity among the other medulloblastoma subtypes are not known, hindering the development of much needed new therapies. Here, we provide evidence that a discrete subtype of medulloblastoma that contains activating mutations in the WNT pathway effector CTNNB1 (hereafter, WNT-subtype), arises outside the cerebellum from cells of the dorsal brainstem. We found that genes marking human WNT-subtype medulloblastomas are more frequently expressed in the lower rhombic lip (LRL) and embryonic dorsal brainstem than in the upper rhombic lip (URL) and developing cerebellum. Magnetic resonance imaging (MRI) and intra-operative reports showed that human WNT-subtype tumors infiltrate the dorsal brainstem, while SHH-subtype tumors are located within the cerebellar hemispheres. Activating mutations in Ctnnb1 had little impact on progenitor cell populations in the cerebellum, but caused the abnormal accumulation of cells on the embryonic dorsal brainstem that included aberrantly proliferating Zic1+ precursor cells. These lesions persisted in all mutant adult mice and in 15% of cases in which Tp53 was concurrently deleted, progressed to form medulloblastomas that recapitulated the anatomy and gene expression profiles of human WNT-subtype medulloblastoma. We provide the first evidence that subtypes of medulloblastoma have distinct cellular origins. Our data provide an explanation for the marked molecular and clinical differences between SHH and WNT-subtype medulloblastomas and have profound implications for future research and treatment of this important childhood cancer. A total of 16 samples are analyzed, repsresenting 4 experimental groups: Ctnnb1 medulloblastoma (3 samples); Ptch1 medulloblastoma (6 samples); embryonic dorsal brainstem (4 samples); and postnatal granule neuron precursor cells (3 samples). Every sample was prepared from a different mouse.
Project description:The morphogen and mitogen, Sonic Hedgehog, activates a Gli1-dependent transcription program that drives proliferation of granule neuron progenitors (GNPs) within the external germinal layer of the postnatally developing cerebellum. Medulloblastomas with mutations activating the Sonic Hedgehog signaling pathway preferentially arise within the external germinal layer, and the tumor cells closely resemble GNPs. Atoh1/Math1, a basic helix-loop-helix transcription factor essential for GNP histogenesis, does not induce medulloblastomas when expressed in primary mouse GNPs that are explanted from the early postnatal cerebellum and transplanted back into the brains of naïve mice. However, enforced expression of Atoh1 in primary GNPs enhances the oncogenicity of cells overexpressing Gli1 by almost three orders of magnitude. Unlike Gli1, Atoh1 cannot support GNP proliferation in the absence of Sonic Hedgehog signaling and does not govern expression of canonical cell cycle genes. Instead, Atoh1 maintains GNPs in a Sonic Hedgehog-responsive state by regulating genes that trigger neuronal differentiation, including many expressed in response to bone morphogenic protein-4. Therefore, by targeting multiple genes regulating the differentiation state of GNPs, Atoh1 collaborates with the pro-proliferative Gli1-dependent transcriptional program to influence medulloblastoma development. Keywords: disease state analysis 14 samples, 1 time series, 2 engineered Medulloblastoma tumors
Project description:While medulloblastoma, a pediatric tumor of the cerebellum, is characterized by aberrations in developmental pathways, the majority of genetic determinants remain unknown. An unbiased Sleeping Beauty transposon screen revealed MyoD as a putative medulloblastoma tumor suppressor. This was unexpected, as MyoD is a muscle differentiation factor and not previously known to be expressed in cerebellum or medulloblastoma. In response to deletion of one allele of MyoD, two other Sonic hedgehog-driven mouse medulloblastoma models showed accelerated tumor formation and death, confirming MyoD as a tumor suppressor in these models. In normal cerebellum, MyoD was expressed in the proliferating granule neuron progenitors that are thought to be precursors to medulloblastoma. Similar to some other tumor suppressors that are induced in cancer, MyoD was expressed in proliferating medulloblastoma cells in three mouse models and in human medulloblastoma cases. This suggests that although expression of MyoD in a proliferating tumor is insufficient to prevent tumor progression, its expression in the cerebellum hinders medulloblastoma genesis. The goal of the gene expression analysis was to determine whether the canonical myogenic differentiation program was involved in increased tumorigenicity following loss of MyoD in the SHH-driven mouse models of medulloblastoma. We compared MyoD+/+; SmoA2 (n=3) with MyoD+/- ;SmoA2 mouse medulloblastoma tumors (n=2).
Project description:A subset of medulloblastomas, the most common brain tumor in children, is hypothesized to originate from granule neuron precursors (GNPs) in which the sonic hedgehog (SHH) pathway is over-activated. MXD3, a basic helix-look-helix zipper transcription factor of the MAD family, has been reported to be upregulated during postnatal cerebellar development and to promote GNP proliferation and MYCN expression. Mxd3 is upregulated in mouse models of medulloblastoma as well as in human medulloblastomas. Therefore, we hypothesize that MXD3 plays a role in the cellular events that lead to medulloblastoma biogenesis. The purpose of this study was to identify MXD3 target genes. Stable cell line overexpressing HA tagged MXD3 immunoprecipitated with anti-HA; 2 biological replicates on 2 promoter arrays
Project description:A subset of medulloblastomas, the most common brain tumor in children, is hypothesized to originate from granule neuron precursors (GNPs) in which the sonic hedgehog (SHH) pathway is over-activated. MXD3, a basic helix-look-helix zipper transcription factor of the MAD family, has been reported to be upregulated during postnatal cerebellar development and to promote GNP proliferation and MYCN expression. Mxd3 is upregulated in mouse models of medulloblastoma as well as in human medulloblastomas. Therefore, we hypothesize that MXD3 plays a role in the cellular events that lead to medulloblastoma biogenesis. The purpose of this study was to identify changes in gene expression in response to MXD3. RNA from MXD3 stable cell lines compared to vector-only cell lines and to parental (DAOY) cell line.
Project description:While medulloblastoma, a pediatric tumor of the cerebellum, is characterized by aberrations in developmental pathways, the majority of genetic determinants remain unknown. An unbiased Sleeping Beauty transposon screen revealed MyoD as a putative medulloblastoma tumor suppressor. This was unexpected, as MyoD is a muscle differentiation factor and not previously known to be expressed in cerebellum or medulloblastoma. In response to deletion of one allele of MyoD, two other Sonic hedgehog-driven mouse medulloblastoma models showed accelerated tumor formation and death, confirming MyoD as a tumor suppressor in these models. In normal cerebellum, MyoD was expressed in the proliferating granule neuron progenitors that are thought to be precursors to medulloblastoma. Similar to some other tumor suppressors that are induced in cancer, MyoD was expressed in proliferating medulloblastoma cells in three mouse models and in human medulloblastoma cases. This suggests that although expression of MyoD in a proliferating tumor is insufficient to prevent tumor progression, its expression in the cerebellum hinders medulloblastoma genesis.