Project description:BackgroundCollectively, plants produce a huge variety of secondary metabolites (SMs) which are involved in the adaptation of plants to biotic and abiotic stresses. The most characteristic feature of SMs is their striking inter- and intraspecific chemical diversity. Cytochrome P450 monooxygenases (CYPs) often play an important role in the biosynthesis of SMs and thus in the evolution of chemical diversity. Here we studied the diversity and evolution of CYPs of two Jacobaea species which contain a characteristic group of SMs namely the pyrrolizidine alkaloids (PAs).ResultsWe retrieved CYPs from RNA-seq data of J. vulgaris and J. aquatica, resulting in 221 and 157 full-length CYP genes, respectively. The analyses of conserved motifs confirmed that Jacobaea CYP proteins share conserved motifs including the heme-binding signature, the PERF motif, the K-helix and the I-helix. KEGG annotation revealed that the CYPs assigned as being SM metabolic pathway genes were all from the CYP71 clan but no CYPs were assigned as being involved in alkaloid pathways. Phylogenetic analyses of full-length CYPs were conducted for the six largest CYP families of Jacobaea (CYP71, CYP76, CYP706, CYP82, CYP93 and CYP72) and were compared with CYPs of two other members of the Asteraceae, Helianthus annuus and Lactuca sativa, and with Arabidopsis thaliana. The phylogenetic trees showed strong lineage specific diversification of CYPs, implying that the evolution of CYPs has been very fast even within the Asteraceae family. Only in the closely related species J. vulgaris and J. aquatica, CYPs were found often in pairs, confirming a close relationship in the evolutionary history.ConclusionsThis study discovered 378 full-length CYPs in Jacobaea species, which can be used for future exploration of their functions, including possible involvement in PA biosynthesis and PA diversity.
Project description:The coordination of chloroplast and nuclear genome status are critical for plant cell function, but the mechanism remain largely unclear. In this study, we report that Arabidopsis thaliana CHLOROPLAST AND NUCLEUS DUAL-LOCALIZED PROTEIN 1 (CND1) maintains genome stability in both the chloroplast and the nucleus.
Project description:The coordination of chloroplast and nuclear genome status are critical for plant cell function, but the mechanism remain largely unclear. In this study, we report that Arabidopsis thaliana CHLOROPLAST AND NUCLEUS DUAL-LOCALIZED PROTEIN 1 (CND1) maintains genome stability in both the chloroplast and the nucleus.
Project description:Segregating plant hybrids often have more ecological and molecular variability compared to parental species, and are therefore useful for studying relationships between different traits, and the adaptive significance of trait variation. Hybrid systems have been used to study the relationship between the expression of plant defense compounds and herbivore susceptibility. We conducted a western flower thrips (WFT) bioassay using a hybrid family and investigated the relationship between WFT resistance and pyrrolizidine alkaloid (PA) variation. The hybrid family consisted of two parental (Jacobaea vulgaris and Jacobaea aquatica) genotypes, two F(1) genotypes, and 94 F(2) hybrid lines. The J. aquatica genotype was more susceptible to thrips attack than the J. vulgaris genotype, the two F(1) hybrids were as susceptible as J. aquatica, and susceptibility to WFT differed among F(2) hybrid lines: 69 F(2) lines were equally susceptible compared to J. aquatica, 10 F(2) lines were more susceptible than J. aquatica and 15 F(2) lines were as resistant as J. vulgaris or were intermediate to the two parental genotypes. Among 37 individual PAs that were derived from four structural groups (senecionine-, jacobine-, erucifoline- and otosenine-like PAs), the N-oxides of jacobine, jaconine, and jacoline were negatively correlated with feeding damage caused by WFT, and the tertiary amines of jacobine, jaconine, jacoline, and other PAs did not relate to feeding damage. Total PA concentration was negatively correlated with feeding damage. Among the four PA groups, only the total concentration of the jacobine-like PAs was negatively correlated with feeding damage. Multiple regression tests suggested that jacobine-like PAs play a greater role in WFT resistance than PAs from other structural groups. We found no evidence for synergistic effects of different PAs on WFT resistance. The relationship between PA variation and WFT feeding damage in the Jacobaea hybrids suggests a role for PAs in resistance to generalist insects.