Project description:<p>Telenomus remus, an egg parasitoid capable of penetrating multi-layered egg masses, has emerged as a promising candidate for the biological control of Spodoptera frugiperda. Nevertheless, our prior investigations have uncovered that its limited cold tolerance represents a critical bottleneck in mass rearing. To overcome this challenge, the overarching objectives were to identify candidate genes and metabolites associated with cold tolerance, investigate the dynamic changes of cryoprotectants under different stress conditions, and elucidate the cold tolerance mechanisms of T. remus. The results revealed that the survival rates of T. remus declined progressively as temperature decreased. Notably, a significant accumulation of trehalose was observed as the stress temperature decreased. Integrated multi-omics analysis indicated that the starch and sucrose metabolism pathway played a key role in mediating cold tolerance in T. remus. Within this metabolic pathway, the expression levels of GAA (α-glucosidase) and GYS (glycogen synthase) exhibited a clear temperature-dependent upregulation trend. Collectively, these findings suggest that T. remus adopted a cold-tolerance strategy centered around trehalose accumulation. These research advances our understanding of the molecular and biochemical foundations of cold adaptation in T. remus, while also highlighting trehalose-mediated osmotic regulation as a prioritized research direction for future ectotherm thermotolerance studies.</p>
2025-06-09 | MTBLS12473 | MetaboLights
Project description:Novel gene rearrangement in the complete mitochondrial genome of Telenomus remus (Hymenoptera: Scelionidae)
Project description:Near isogenic wheat lines(NILs), differing in the presence of both or none of the FHB-resistance QTL Fhb1 and Qfhs.ifa-5A, have been sequenced using Illumina HiSeq2000 under disease pressure (3, 6, 12, 24, 36, 48 hai) as well as with mock-inoculation, to discern transcriptional differences induced by Fusarium graminearum. The NILs are BC5F2 lines generated from the Mexican Spring wheat line CM-82036, the resistance QTL donor line, as recurrent background and the susceptible German Spring wheat line Remus as the donor of the susceptible QTL alleles.
Project description:Upon axenic cultivation in presence of the mycotoxin inducing nitrogen source L- ornithine the HEP1 deletion mutant showed an altered secondary metabolite profile including reduced levels of deoxynivalenol (DON). This finding was contrasted with a 1.5 fold increased infection rate on the susceptible wheat cv. Remus which was accompanied by increased production of DON. Transcriptome analysis of the HEP1 deletion versus the PH-1 wildtype strain during pathogenic growth state as well as during saprophytic growth on dead (non-responding) wheat heads and axenic samples allows to distinguish gene response of the pathogen reacting on signals from the active, defending plant from those regulated by plant substrate effects or in vitro mimicked mycotoxin inducing conditions, providing insights into gene regulation underlying the observed hypervirulence.
Project description:Microbiome sequencing model is a Named Entity Recognition (NER) model that identifies and annotates microbiome nucleic acid sequencing method or platform in texts. This is the final model version used to annotate metagenomics publications in Europe PMC and enrich metagenomics studies in MGnify with sequencing metadata from literature. For more information, please refer to the following blogs: http://blog.europepmc.org/2020/11/europe-pmc-publications-metagenomics-annotations.html https://www.ebi.ac.uk/about/news/service-news/enriched-metadata-fields-mgnify-based-text-mining-associated-publications