Project description:Land cover change has long been recognized that marked effect the amount of soil organic carbon. However, little is known about microbial-mediated effect processes and mechanism on soil organic carbon. In this study, the soil samples in a degenerated succession from alpine meadow to alpine steppe meadow in Qinghai-Tibetan Plateau degenerated, were analyzed by using GeoChip functional gene arrays.
Project description:The spread of antibiotic resistance genes (ARG) into agricultural soils, products, and foods severely limits the use of organic fertilizers in agriculture. In this study, experimental land plots were fertilized, sown, and harvested for two consecutive agricultural cycles using either mineral or three types of organic fertilizers: sewage sludge, pig slurry, or composted organic fraction of municipal solid waste. The analysis of the relative abundances of more than 200,000 ASV (Amplicon Sequence Variants) allowed the identification of a small, but significant (<10%) overlap between soil and fertilizer microbiomes, particularly in soils sampled the same day of the harvest (post-harvest soils). Loads of clinically relevant ARG were significantly higher (up to 100 fold) in fertilized soils relative to the initial soil. The highest increases corresponded to post-harvest soils treated with organic fertilizers, and they correlated with the extend of the contribution of fertilizers to the soil microbiome. Edible products (lettuce and radish) showed low, but measurable loads of ARG (sul1 for lettuces and radish, tetM for lettuces). These loads were minimal in mineral fertilized soils, and strongly dependent on the type of fertilizer. We concluded that at least part of the observed increase on ARG loads in soils and foodstuffs were actual contributions from the fertilizer microbiomes. Thus, we propose that adequate waste management and good pharmacological and veterinarian practices may significantly reduce the potential health risk posed by the presence of ARG in agricultural soils and plant products.
Project description:Many trees form ectomycorrhizal symbiosis with fungi. During symbiosis, the tree roots supply sugar to the fungi in exchange for nitrogen, and this process is critical for the nitrogen and carbon cycles in forest ecosystems. However, the extents to which ectomycorrhizal fungi can liberate nitrogen and modify the soil organic matter and the mechanisms by which they do so remain unclear since they have lost many enzymes for litter decomposition that were present in their free-living, saprotrophic ancestors. Using time-series spectroscopy and transcriptomics, we examined the ability of two ectomycorrhizal fungi from two independently evolved ectomycorrhizal lineages to mobilize soil organic nitrogen. Both species oxidized the organic matter and accessed the organic nitrogen. The expression of those events was controlled by the availability of glucose and inorganic nitrogen. Despite those similarities, the decomposition mechanisms, including the type of genes involved as well as the patterns of their expression, differed markedly between the two species. Our results suggest that in agreement with their diverse evolutionary origins, ectomycorrhizal fungi use different decomposition mechanisms to access organic nitrogen entrapped in soil organic matter. The timing and magnitude of the expression of the decomposition activity can be controlled by the below-ground nitrogen quality and the above-ground carbon supply.
Project description:It has long been recognized that species occupy a specific ecological niche within their ecosystem. The ecological niche is defined as the number of conditions and resources that limit species distribution. Within their ecological niche, species do not exist in a single physiological state but in a number of states we call the Natural Operating Range. In this paper we link ecological niche theory to physiological ecology by measuring gene expression levels of collembolans exposed to various natural conditions. The soil-dwelling collembolan Folsomia candida was exposed to 26 natural soils with different soil characteristics (soil type, land use, practice, etc). The animals were exposed for two days and gene expression levels were measured. The main factor found to regulate gene expression was the soil type (sand or clay), in which 18.5% of the measured genes were differentially expressed. Gene Ontology analysis showed animals exposed to sandy soils experience general stress, affecting cell homeostasis and replication. Multivariate analysis linking soil chemical data to gene expression data revealed that soil fertility influences gene expression. Land-use and practice had less influence on gene expression; only forest soils showed a different expression pattern. A variation in gene expression variation analysis showed overall low variance in gene expression. The large difference in response to soil type was caused by the soil physicochemical properties where F. candida experiences clay soils and sandy soils as very different from each other. This collembolan prefers fertile soils with high organic matter content, as soil fertility was found to correlate with gene expression and animals exposed to sandy soils (which, in general, have lower organic matter content) experience more general stress. Finally, we conclude that there is no such thing as a fixed physiological state for animals in their ecological niche and the boundary between the ecological niche and a stressed state depends on the genes/pathways investigated.
Project description:Changes in soil properties (e.g. pH, organic matter content, granulometry) can influence chemical toxicity to organisms and act alone as stressors. Previous studies on Enchytraeus albidus showed that changes in soil properties caused effects on reproduction and avoidance behavior and also oxidative stress. In addition, results at the transcritptomic level indicated changes in gene expression profile due to soil properties changes. In this study, E. albidus was exposed to modified versions of the artificial standard OECD soil (different pH, OM and clay content) in different exposure times (2, 4 and 8 days). The gene expression profile was characterized using a class comparison statistical analysis. Results indicated that the transcriptional response was time dependent, with different genes being affected at different time points. Results also showed some genes (and biological functions) being affected in a soil specific way.
Project description:We investigated the toxicity of soil samples derived from a former municipal landfill site in the South of the Netherlands, where a bioremediation project is running aiming at reusing the site for recreation. Both an organic soil extract and the original soil sample was investigated using the ISO standardised Folsomia soil ecotoxicological testing and gene expression analysis. The 28 day survival/reproduction test revealed that the ecologically more relevant original soil sample was more toxic than the organic soil extract. Microarray analysis showed that the more toxic soil samples induced gene regulatory changes in twice as less genes compared to the soil extract. Consequently gene regulatory changes were highly dependent on sample type, and were to a lesser extent caused by exposure level. An important biological process shared among the two sample types was the detoxification pathway for xenobiotics (biotransformation I, II and III) suggesting a link between compound type and observed adverse effects. Finally, we were able to retrieve a selected group of genes that show highly significant dose-dependent gene expression and thus were tightly linked with adverse effects on reproduction. Expression of four cytochrome P450 genes showed highest correlation values with reproduction, and maybe promising genetic markers for soil quality. However, a more elaborate set of environmental soil samples is needed to validate the correlation between gene expression induction and adverse phenotypic effects.
2012-04-16 | GSE37154 | GEO
Project description:Soil bacterial community on different soils treated by chemical and organic fertilizers.