Project description:In this study, we conducted an integrated analysis of skin measurements, clinical BSTI surveys, and the skin microbiome of 950 Korean subjects to examine the ideal skin microbiome-biophysical association. By utilizing four skin biophysical parameters, we identified four distinct Korean Skin Cutotypes (KSCs) and categorized the subjects into three aging groups based on their age distribution. We established strong connections between 15 core genera and the four KSC types within the three aging groups, revealing three prominent clusters of the facial skin microbiome. Together with skin microbiome variations, skin tone/elasticity distinguishes aging groups while oiliness/hydration distinguishes individual differences within aging groups. Our study provides prospective reality data for customized skin care based on the microbiome environment of each skin type.
Project description:To study the development of pig facial skin after birth, we use the facial skin tissues of healthy Chenghua sows as experimental materials. we then performed gene expression profiling analysis using data obtained from RNA-seq of pig facial skin tissues at four time points.
Project description:Ageing compromises the mechanical properties of skin, with increased fragility and coincident slowing of the healing process making aged skin susceptible to chronic wounding. The ageing process is driven by an aggregation of damage to cells and extracellular matrix, compounded by regulatory changes, including age-associated hormonal dysregulation. Here we report on the correlation between mechanical properties and composition of skin from ovariectomised and chronologically aged mice, to assess the extent to which estrogen deprivation drives dermal ageing. We found that age and estrogen abrogation affected skin mechanical properties in contrasting ways: ageing lead to increased tensile strength and stiffness while estrogen deprivation had the opposite effect. Mass spectrometry proteomics showed that the quantity of extractable fibrillar collagen-I decreased with ageing, but no change was observed in ovariectomised mice. This observation, in combination with measurements of tensile strength, was interpreted to reflect changes to the extent of extracellular matrix crosslinking, supported by a significant increase in the staining of advanced glycation endpoints in aged skin. Loss of mechanical strength in the ovariectomy model was consistent with a loss of elastic fibres. Other changes in extracellular matrix composition broadly correlated between aged and ovariectomised mice, indicative of the role of estrogen-related pathways in ageing. This study offers a coherent picture of the relationship between tissue composition and mechanics, but suggests that the deleterious effects of intrinsic skin ageing are compounded by factors beyond hormonal dysregulation.
Project description:Ageing compromises the mechanical properties of skin, with increased fragility and coincident slowing of the healing process making aged skin susceptible to chronic wounding. The ageing process is driven by an aggregation of damage to cells and extracellular matrix, compounded by regulatory changes, including age-associated hormonal dysregulation. Here we report on the correlation between mechanical properties and composition of skin from ovariectomised and chronologically aged mice, to assess the extent to which estrogen deprivation drives dermal ageing. We found that age and estrogen abrogation affected skin mechanical properties in contrasting ways: ageing lead to increased tensile strength and stiffness while estrogen deprivation had the opposite effect. Mass spectrometry proteomics showed that the quantity of extractable fibrillar collagen-I decreased with ageing, but no change was observed in ovariectomised mice. This observation, in combination with measurements of tensile strength, was interpreted to reflect changes to the extent of extracellular matrix crosslinking, supported by a significant increase in the staining of advanced glycation endpoints in aged skin. Loss of mechanical strength in the ovariectomy model was consistent with a loss of elastic fibres. Other changes in extracellular matrix composition broadly correlated between aged and ovariectomised mice, indicative of the role of estrogen-related pathways in ageing. This study offers a coherent picture of the relationship between tissue composition and mechanics, but suggests that the deleterious effects of intrinsic skin ageing are compounded by factors beyond hormonal dysregulation.
Project description:Spatial organization of different cell types within prenatal skin across various anatomical sites is not well understood. To address this, here we have generated spatial transcriptomics data from prenatal facial and abdominal skin obtained from a donor at 10 post conception weeks. This in combination with our prenatal skin scRNA-seq dataset has helped us map the location of various identified cell types.
Project description:Setleis Syndrome is a rare type of facial ectodermal dysplasia characterized by an aged leonine appearance with puckered skin about the eyes, absent eyelashes on both lids or multiple rows on the upper lids and none on the lower lids, eyebrows that slant sharply upward laterally, and a rubbery feel of the nose and chin. Some of the patients showed bilateral temporal marks superficially like forceps marks and like the lesions seen in focal facial dermal dysplasia. We have evidence that Setleis Syndrome is caused by nonsense mutations in the gene coding for the small bHLH transcription factor known as TWIST2 in Puerto Rican and Omani patients. We performed expression microarray analysis of RNA samples derived from skin fibroblasts grown from skin biopsies of Setleis Syndrome patients and normal controls in order to identify genes potentially involved in facial development and the pathogenesis of Setleis Syndrome. A total of 4 control and 4 Setleis Syndrome RNA samples were hybridized to U133 plus 2 Affymetrix 3'IVT arrays in the Mount Sinai School of Medicine Microarray Core Facility.