Project description:Purpose: To understand the miRNAome changes during coleoptile senescence, small RNA libraries were constructed from control and senescence tissues and subjected to Illumina sequencing. Methods: Rice seeds were surface sterilized and submerged for seven days in sterile water. The seeds with coleoptile was transferred to aerobic condition. Senescence progression was monitored and tissues of un-senesced and senesced coleoptiles were harvested. Total RNA was isolated from the harvested tissues. Total four small RNA libraries of coleoptile senescence were constructed and high-throughput sequencing was performed using Illumina GA IIx system . . Results: Small RNA sequencing identified forty-one known and twenty-one novel miRNAs that were differentially expressed during coleoptile senescence. Integration of expression data of transcriptome and miRNAome identified 148 miRNA-mRNA modules, mainly comprised of miRNAs regulating TFs, signaling-associated factors and transporters, thereby demonstrating multi-tiered regulation of coleoptile senescence. Conclusions: The present study has generated a comprehensive resource of the molecular networks that enrich our understanding of the fundamental pathways regulating coleoptile senescence in rice.
Project description:Normally, rice can elongate the coleoptile under submerged condition. However, reduced adh activity (rad) mutant cannot elongate the coleoptile under submergence. To investigate the change in gene expression, we performed microarray analysis. In this analysis, we used 1 day old seedling of rice. But it is difficult to isolate only coleoptile from rice embryo without any contamination in this stage. Therefore, we applied laser microdissection (LM) technique to this microarray. By use of LM, we isolated coleoptile from rice embryo and use for microarray analysis. As the results, we found that the differences in the gene expression profiles of coleoptile between wild type and rad mutant.
Project description:Normally, rice can elongate the coleoptile under submerged condition. However, reduced adh activity (rad) mutant cannot elongate the coleoptile under submergence. To investigate the change in gene expression, we performed microarray analysis. In this analysis, we used 1 day old seedling of rice. But it is difficult to isolate only coleoptile from rice embryo without any contamination in this stage. Therefore, we applied laser microdissection (LM) technique to this microarray. By use of LM, we isolated coleoptile from rice embryo and use for microarray analysis. As the results, we found that the differences in the gene expression profiles of coleoptile between wild type and rad mutant. Gene expression analysis in coleoptile of wild type and mutant.
Project description:Purpose: To understand the transcriptional changes during coleoptile senescence, transcriptome libraries were constructed from control and senescence tissues and subjected to Illumina sequencing. Methods: Rice seeds were surface sterilized and submerged for seven days in sterile water. The seeds with coleoptile was transferred to aerobic condition. Senescence progression was monitored and tissues of un-senesced and senesced coleoptiles were harvested. Total RNA was isolated from the harvested tissues. mRNA libraries were generated and sequenced as 101 bp paired-end reads by using Illumina Hiseq 4000. Results: Our analysis revealed that 3166 transcripts were differentially expressed in senescing coleoptile (Day 2) samples as compared to the control. Furthermore, 44 and 273 transcripts showed specific expression in control and day 2 samples, respectively. From the functional category analysis, we observed that 197, 182, 99 and 88 transcripts belonging to signalling, transcription factors, hormone signalling and transporters respectively were differentially expressed during coleoptile senescence . And 15, 12, 3, and 6 transcripts showed senescence specific expression patterns in the transporters, transcription factors, signalling and hormone signalling categories respectively. Conclusions: The present study has generated a comprehensive resource of the molecular networks that enrich our understanding of the fundamental pathways regulating coleoptile senescence in rice.
Project description:In this study, we investigated novel rice genes that are expressed in aleurone cells by RNA-seq. RNA-seq was performed on four samples: a control sample, and samples treated with ABA, GA, and a mixture of the two hormones.
Project description:To understand the dynamics and global gene reprogramming in the early response to mechanical wounding in rice, the transcriptional response to mechanical injury was analyzed. A time-course experiment revealed the highly dynamic nature of the wound response in rice. Mechanical wounding triggered extensive gene expression reprogramming in the locally wounded leaf, affecting various physiological processes, including defense mechanisms and potentially tissue repair and regeneration. The rice response to mechanical wounding displayed both differences and similarities compared to the response to jasmonate treatment. These results highlight the importance of early JA signaling in response to mechanical stress in rice. This analysis provides an overview of the global transcriptional response to mechanical stress in rice, offering valuable insights for future studies on rice's response to injury, insect attack, and abiotic stresses.
2024-10-21 | GSE279814 | GEO
Project description:Transcriptome of coleoptile in submerged rice
Project description:In order to identify new miRNAs, NAT-siRNAs and possibly abiotic-stress regulated small RNAs in rice, three small RNA libraries were constructed from control rice seedlings and seedlings exposed to drought or salt stress, and then subjected to pyrosequencing.
Project description:Chilling stress is a major abiotic stress that affects rice growth and development. Rice seedlings are quite sensitive to chilling stress and this harms global rice production. Comprehensive studies of the molecular mechanisms for response to low temperature are of fundamental importance to chilling tolerance improvement. The number of identified cold regulated genes (CORs) in rice is still very small. Circadian clock is an endogenous timer that enables plants to cope with forever changing surroundings including light–dark cycles imposed by the rotation of the planet. Previous studies have demonstrated that the circadian clock regulates stress tolerances in plants show circadian clock regulation of plant stress tolerances. However, little is known about coordination of the circadian clock in rice chilling tolerance. In this study, we investigated rice responses to chilling stress under conditions with natural light-dark cycles. We demonstrated that chilling stress occurring at nighttime significantly decreased chlorophyll content and photosynthesis efficiency in comparison with that occurring at daytime. Transcriptome analysis characterized novel CORs in indica rice, and suggested that circadian clock obviously interferes with cold effects on key genes in chlorophyll (Chl) biosynthesis pathway and photosynthesis-antenna proteins. Expression profiling revealed that chilling stress during different Zeitberger times (ZTs) at nighttime repressed the expression of those genes involved Chl biosynthesis and photosynthesis, whereas stress during ZTs at daytime increases their expression dramatically. Moreover, marker genes OsDREBs for chilling tolerance were regulated differentially by the chilling stress occurring at different ZTs. The phase and amplitude of oscillation curves of core clock component genes such as OsLHY and OsPRR1 are regulated by chilling stress, suggesting the role of chilling stress as an input signal to the rice circadian clock. Our work revealed impacts of circadian clock on chilling responses in rice, and proved that the effects on the fitness costs are varying with the time in a day when the chilling stress occurs.
Project description:Autotoxicity plays an important mechanism in regulating plant productivity. Ferulic acid (FA) is phytotoxic and was identified in extracts and residues of rice plants as a candidate for rice allelochemicals. To help characterize the autotoxicity mechanism of rice, we present the first large-scale, transcriptomic analysis of rice root responses to ferulic acid.