Project description:Although bamboo is one of the most important woody crops in Asia, information on its genome is still very limited. To investigate the relationship among Poaceae members and to understand the mechanism of albino mutant generation in vitro, the complete chloroplast genome of two economically important bamboo species, Dendrocalamus latiflorus Munro and Bambusa oldhamii Munro, was determined employing a strategy that involved polymerase chain reaction (PCR) amplification using 443 novel primers designed to amplify the chloroplast genome of these two species. The lengths of the B. oldhamii and D. latiflorus chloroplast genomes are 139,350 and 139,365 bp, respectively. The organization structure and the gene order of these two bamboos are identical to other members of Poaceae. Highly conserved chloroplast genomes of Poaceae facilitated sequencing by the PCR method. Phylogenetic analysis using both chloroplast genomes confirmed the results obtained from studies on chromosome number and reproductive organ morphology. There are 23 gaps, insertions/deletions > 100 bp, in the chloroplast genomes of 10 genera of Poaceae compared in this study. The phylogenetic distribution of these gaps corresponds to their taxonomic placement. The sequences of these two chloroplast genomes provide useful information for studying bamboo evolution, ecology and biotechnology.
Project description:Cytokinin oxidase/dehydrogenase (CKX) catalyzes the irreversible breakdown of active cytokinins, which are a class of plant hormones that regulate cell division. According to conserved sequences of CKX genes from monocotyledons, PCR primers were designed to synthesize a probe for screening a bamboo genomic library. Cloned results of three genes encoding cytokinin oxidase were named as follows: BoCKX1, BoCKX2, and BoCKX3. In comparing the exon-intron structures among the above three genes, there are three exons and two introns in BoCKX1 and BoCKX3 genes, whereas BoCKX2 contains four exons and three introns. The amino acid sequence of BoCKX2 protein shares 78% and 79% identity with BoCKX1 and BoCKX3 proteins, respectively. BoCKX1 and BoCKX3 genes are particularly closely related given that the amino acid and nucleotide sequence identities are more than 90%. These three BoCKX proteins carried putative signal peptide sequences typical of secretion pathway, and a GHS-motif was found at N-terminal flavin adenine dinucleotide (FAD) binding domain, suggesting that BoCKX proteins might covalently conjugate with an FAD cofactor through a predicted histidine residue.
Project description:To gain insights into the molecular mechanisms controlling bamboo growth, mRNA differential display was used to clone genes that are differentially expressed in various tissues of shoots at different growth stages, and their expression patterns were further validated by cDNA microarray. A number of genes and signaling pathways are proposed to have significant roles in controlling the elongation of the bamboo culm.
Project description:Bamboo is known for its edible shoots and beautiful texture and has considerable economic and ornamental value. Unique among traditional flowering plants, many bamboo plants undergo extensive synchronized flowering followed by large-scale death, seriously affecting the productivity and application of bamboo forests. To date, the molecular mechanism of bamboo flowering characteristics has remained unknown. In this study, a SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1)-like gene, BoMADS50, was identified from Bambusa oldhamii. BoMADS50 was highly expressed in mature leaves and the floral primordium formation period during B. oldhamii flowering and overexpression of BoMADS50 caused early flowering in transgenic rice. Moreover, BoMADS50 could interact with APETALA1/FRUITFULL (AP1/FUL)-like proteins (BoMADS14-1/2, BoMADS15-1/2) in vivo, and the expression of BoMADS50 was significantly promoted by BoMADS14-1, further indicating a synergistic effect between BoMADS50 and BoAP1/FUL-like proteins in regulating B. oldhamii flowering. We also identified four additional transcripts of BoMADS50 (BoMADS50-1/2/3/4) with different nucleotide variations. Although the protein-CDS were polymorphic, they had flowering activation functions similar to those of BoMADS50. Yeast one-hybrid and transient expression assays subsequently showed that both BoMADS50 and BoMADS50-1 bind to the promoter fragment of itself and the SHORT VEGETATIVE PHASE (SVP)-like gene BoSVP, but only BoMADS50-1 can positively induce their transcription. Therefore, nucleotide variations likely endow BoMADS50-1 with strong regulatory activity. Thus, BoMADS50 and BoMADS50-1/2/3/4 are probably important positive flowering regulators in B. oldhamii. Moreover, the functional conservatism and specificity of BoMADS50 and BoMADS50-1 might be related to the synchronized and sporadic flowering characteristics of B. oldhamii.
Project description:To gain insights into the molecular mechanisms controlling bamboo growth, mRNA differential display was used to clone genes that are differentially expressed in various tissues of shoots at different growth stages, and their expression patterns were further validated by cDNA microarray. A number of genes and signaling pathways are proposed to have significant roles in controlling the elongation of the bamboo culm. Etiolated shoots (average height: 15 cm) that had not yet emerged from the ground and green shoots (average height: 100 cm) of Bambusa oldhamii were collected. The shoots were divided into three parts, the culm base, the middle and the top regions for RNA extraction and processing. The RNA from the middle region of the etiolated shoots was used as a reference in microarray comparisons.