Project description:Hepcidin is demonstrated to be the key iron regulatory hormone, produced by the liver. Here we show an unexpected role of hepcidin as a master initiator of the local and systemic inflammatory response. We found that hepcidin was highly expressed in the colon of two major idiopathic inflammatory bowel diseases : Crohn's disease (CD) and ulcerative colitis (UC). Thanks to the generation of intestinal specific hepcidin KO mice (Hepc{delta}int), we found in a DSS-induced colitis model that hepcidin mediated the induction of key inflammatory cytokines and was protective against intestinal injury. In a model of LPS-induced acute inflammation, intestinal hepcidin expression was increased through a TLR4 dependent pathway andwas required for intestinal neutrophil infiltration and inflammation. Strikingly, intestinal hepcidin was absolutely required for the systemic production of key inflammatory cytokines (IL-6, CXCL1, TNF-alpha ...) as well as for the setting of the hypoferremia of inflammation. In a sepsis model, Hepc{delta}int mice were protected against LPS-induced mortality. Mechanistically, we showed that hepcidin was a direct neutrophil chemoattractant and a proinflammatory molecule in macrophages through a Myd88 dependent pathway. Altogether, we demonstrated that Hepcidin is a key new essential component of the immune system and may be a promising target in many inflammatory diseases. We used microarrays to detail the global program of gene expression of BMDM treat with hepcidin for 1 hour.
Project description:Aims: Atorvastatin is a commonly used cholesterol-lowering drug that possesses non-canonical anti-inflammatory properties. However, the precise mechanism underlying its anti-inflammatory effects remains unclear. Materials and methods: The acute phase of ulcerative colitis (UC) was induced using a 5 % dextran sulfate sodium (DSS) solution for 7 consecutive days and administrated with atorvastatin (10 mg/kg) from day 3 to day 7. mRNA-seq, histological pathology, and inflammatory response were determined. Intestinal microbiota alteration, tryptophan, and its metabolites were analyzed through 16S rRNA sequencing and untargeted metabolomics. Key findings: Atorvastatin relieved the DSS-induced UC in mice, as evidenced by colon length, body weight, disease activity index score and pathological staining. Atorvastatin treatment reduced the level of pro_x0002_inflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α). Atorvastatin also relieved the intestinal microbiota disorder caused by UC and decreased the proliferation of pernicious microbiota such as Akkermansia and Bacteroides. Atorvastatin dramatically altered tryptophan metabolism and increased the fecal contents of tryptophan, indolelactic acid (ILA), and indole-3-acetic acid (IAA). Furthermore, atorvastatin enhanced the expression level of aryl hydrocarbon receptor (AhR) and interleukin-22 (IL-22) and further promoted the expression level of intestinal tight junction proteins, such as ZO-1 and occludin, in colitis mice. Significance: These findings indicated that atorvastatin could alleviate UC by regulating intestinal flora disorders, promoting microbial tryptophan metabolism, and repairing the intestinal barrier.
Project description:Hepcidin is demonstrated to be the key iron regulatory hormone, produced by the liver. Here we show an unexpected role of hepcidin as a master initiator of the local and systemic inflammatory response. We found that hepcidin was highly expressed in the colon of two major idiopathic inflammatory bowel diseases : Crohn's disease (CD) and ulcerative colitis (UC). Thanks to the generation of intestinal specific hepcidin KO mice (Hepc{delta}int), we found in a DSS-induced colitis model that hepcidin mediated the induction of key inflammatory cytokines and was protective against intestinal injury. In a model of LPS-induced acute inflammation, intestinal hepcidin expression was increased through a TLR4 dependent pathway andwas required for intestinal neutrophil infiltration and inflammation. Strikingly, intestinal hepcidin was absolutely required for the systemic production of key inflammatory cytokines (IL-6, CXCL1, TNF-alpha ...) as well as for the setting of the hypoferremia of inflammation. In a sepsis model, Hepc{delta}int mice were protected against LPS-induced mortality. Mechanistically, we showed that hepcidin was a direct neutrophil chemoattractant and a proinflammatory molecule in macrophages through a Myd88 dependent pathway. Altogether, we demonstrated that Hepcidin is a key new essential component of the immune system and may be a promising target in many inflammatory diseases.
Project description:Gut microbiota is an unignored target in maintaining intestinal homeostasis due to its regulatory effects on intestinal health through multiple mechanisms, including enhancing intestinal barriers, modulating microbial diversity, secreting various metabolites, etc. Bacteriocins produced by probiotics have been gradually proved vital for intestinal diseases intervention, however, the corresponding mechanisms have received less attention and the whole story of their regulative activities are hard to be fully uncovered. The two-peptide Plantaricin NC8 (PLNC8), coded by gene plnc8, is a bacteriocin ubiquitously produced by Lactobacillus plantarum, has been regarded as the potential vital bacteriocin for the anti-inflammatory effects of Lactobacillus plantarum. This study exploited CRISPR-cas9 and prokaryotic gene overexpression techniques to construct the plnc8 strains for the anti-inflammatory mechanism investigation. Based on the metagenomics, transcriptomics and metabolomics analysis, the anti-enteritis mechanism of PLNC8 systematically in DSS-induced enteritis models were comprehensively revealed. PLNC8 induced alterations in the composition of gut microbiota composition, promoting the alterations of multiple probiotics such as Eubacterium plexicaudatum, Doreasp.5-2, Enterococcus cecorum and Prevotella oulorum. Besides, various metabolites produced by the gut microbiota were influenced, and the key metabolites of xanthine, hypoxanthine, and L-histidine were regulated via purine and histidine metabolic pathways. These metabolites further inhibited p38 MAPK phosphorylation of enterocytes induced by DSS. Ultimately, the intestinal barrier repairment and anti- enteritis were achieved, proving the anti-enteritis effects of PLNC8 via microbe-metabolites-enterocyte axis.