Project description:The first GSSM of V. vinifera was reconstructed (MODEL2408120001). Tissue-specific models for stem, leaf, and berry of the Cabernet Sauvignon cultivar were generated from the original model, through the integration of RNA-Seq data. These models have been merged into diel multi-tissue models to study the interactions between tissues at light and dark phases.
Project description:This pilot metabolomic study will evaluate cecal specimens from an established mouse model of AD, the tq2576 mouse model of cerebral amyloid overexpression, in comparison to their non-transgenic (ntg) littermates. These animals were either on a CR or ad libitum (AL) diet, and specimens were collected at two time points (5 and 15 months of age). Tissue from this cohorts of mice have already undergone microbiome analysis, and await coordinated brain and peripheral tissue assessments. Future analysis will include metabolomics, RNA-seq, and microarray data to assess the gut-brain microbiome system in neurodegenerative disorders.
Project description:This pilot metabolomic study will evaluate brain specimens from an established mouse model of AD, the tq2576 mouse model of cerebral amyloid overexpression (APP), in comparison to their non-transgenic (NTG) littermates. These animals were either on a CR or ad libitum (AL) diet, and specimens were collected at two time points (5 and 15 months of age). Tissue from this cohorts of mice have already undergone microbiome analysis, and await coordinated brain and peripheral tissue assessments. Future analysis will include metabolomics, RNA-seq, and microarray data to assess the gut-brain microbiome system in neurodegenerative disorders.
2016-09-07 | ST000462 | MetabolomicsWorkbench
Project description:RNA-seq of SMIM26 overexpression
Project description:Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) share key features, including accumulation of the RNA binding protein TDP-43. TDP-43 regulates RNA homeostasis, but it remains unclear whether RNA stability is affected in these disorders. We use Bru-seq and BruChase-seq to assess genome-wide RNA stability in ALS patient-derived cells, demonstrating profound destabilization of ribosomal and mitochondrial transcripts. This pattern is recapitulated by TDP-43 overexpression, suggesting a primary role for TDP-43 in RNA destabilization, and in post-mortem samples from ALS and FTD patients. Proteomics and functional studies illustrate corresponding reductions in mitochondrial components and compensatory increases in protein synthesis. Collectively, these observations suggest that TDP-43 deposition leads to targeted RNA instability in ALS and FTD, and may ultimately cause cell death by disrupting energy production and protein synthesis pathways.
2018-07-24 | PXD009969 | Pride
Project description:RNA-seq of MYB161 overexpression plants