Project description:The community composition (in terms of abundance, distribution and contribution of diverse clades) of bacteria involved in nitrogen transformations in the oxygen minimum zones may be related to the rates of fixed N loss in these systems. The abundance of both denirifying and anammox bacteria, and the assemblage composition of denitrifying bacteria were investigated in the Eastern Tropical South Pacific and the Arabian Sea using assays based on molecular markers for the two groups of bacteria. The abundance and distribution of bacteria associated with the fixed N removal processes denitrification and anammox were investigated using quantitative PCR for genes encoding nitrite reductase (nirK and nirS) in denitrifying bacteria and hydrazine oxidase(hzo) and 16S rRNA genesin anammox bacteria. All of these genes had depth distributions with maxima associated with the secondary nitrite maximum in low oxygen waters. NirS was mch more abundant than nirK, and much more abundant than the 16S rRNA gene from anammox bacteria. The ratio of hzo:16S rRNA for anammox was low and variable implying greater unexplored diversity in the the hzo gene. Assemblage composition of the abundant nirS-type denitrifiers was evaluated using a funcitonal gene microarray. Of the nirS archetypes represented on the microarray, very few occurred speficically in one region or depth interval, but the assemblages varied significantly. Community composition of denitrifiers based on microarray analysis of the nirS gene was most different between geographical regions. Within each region, the surface layer and OMZ assemblages clustered distinctly. Thus, in addition to spatial and temporal variation in denitrificaiton and anammox rates, both microbial abundance and community composition also vary between OMZ regions and depths. Two color array (Cy3 and Cy5): the universal standard 20-mer oligo is printed to the slide with a 70-mer oligo (an archetype). Environmental DNA sequences (fluoresced with Cy3) within 15% of the 70-mer conjugated to a 20-mer oligo (fluoresced with Cy5) complementary to the universal standard will bind to the oligo probes on the array. Signal is the ratio of Cy3 to Cy5. Three replicate probes were printed for each archetype. Two replicate arrays were run on duplicate targets.
Project description:The community composition (in terms of abundance, distribution and contribution of diverse clades) of bacteria involved in nitrogen transformations in the oxygen minimum zones may be related to the rates of fixed N loss in these systems. The abundance of both denirifying and anammox bacteria, and the assemblage composition of denitrifying bacteria were investigated in the Eastern Tropical South Pacific and the Arabian Sea using assays based on molecular markers for the two groups of bacteria. The abundance and distribution of bacteria associated with the fixed N removal processes denitrification and anammox were investigated using quantitative PCR for genes encoding nitrite reductase (nirK and nirS) in denitrifying bacteria and hydrazine oxidase(hzo) and 16S rRNA genesin anammox bacteria. All of these genes had depth distributions with maxima associated with the secondary nitrite maximum in low oxygen waters. NirS was mch more abundant than nirK, and much more abundant than the 16S rRNA gene from anammox bacteria. The ratio of hzo:16S rRNA for anammox was low and variable implying greater unexplored diversity in the the hzo gene. Assemblage composition of the abundant nirS-type denitrifiers was evaluated using a funcitonal gene microarray. Of the nirS archetypes represented on the microarray, very few occurred speficically in one region or depth interval, but the assemblages varied significantly. Community composition of denitrifiers based on microarray analysis of the nirS gene was most different between geographical regions. Within each region, the surface layer and OMZ assemblages clustered distinctly. Thus, in addition to spatial and temporal variation in denitrificaiton and anammox rates, both microbial abundance and community composition also vary between OMZ regions and depths.
Project description:Several reports have described the involvement of miRNAs in abiotic stresses. However, their role in biotic stress or to beneficial microbes has not been fully explored. In order to understand on the epigenetic regulation in plant in response to nitrogen-fixing bacteria association, we analyzed the sRNA regulation in maize hybrids (Zea mays M-bM-^@M-^S UENF 506-8) inoculated with the beneficial diazotrophic bacteria (Herbaspirillum seropedicae). Deep sequencing analysis was carried out to identify the sRNAs regulated in maize during association with diazotrophic bacteria. For this analysis, maize plants were germinated in wet paper and put in hydroponic system with HoaglandM-bM-^@M-^Ys solution and then inoculated with H. seropedicae for seven days. Mock and inoculated plants were collected and total RNA from a pool of samples was extracted with Trizol reagent. The two sRNA libraries were sequenced by Illumina. The sequences were filtered to remove adaptors and contaminants rRNA and tRNAs, and sequences with 18-28 nt in length were selected. To identify the miRNAs present in these libraries, we used two strategies using the same website (http://srna-tools.cmp.uea.ac.uk): one to identify novel miRNAs using the maize genome (verson 2) and miRCat pipeline; and other to identify conserved miRNAs using the miRBase database (release 13.0, http://microrna.sanger.ac.uk) and miRProf pipeline. We identified 17 novel putative miRNAs candidates and mapped the precursor of these miRNAs in the maize genome. Furthermore, we identified 25 conserved miRNAs families and the differential expressions were analyzed with miRProf pipeline. The bioinformatics analysis of four up-regulated miRNAs (miR397, miR398, miR408 and miR528) in inoculated plant was validated using stemM-bM-^@M-^Sloop RT-PCR assay. Our findings contribute to increase the knowledge of the molecular relation between plants and endophytic bacteria. Screenning of sRNA transcriptome of maize plants inoculated with Herbaspirillum seropedicae after seven days
Project description:Several reports have described the involvement of miRNAs in abiotic stresses. However, their role in biotic stress or to beneficial microbes has not been fully explored. In order to understand on the epigenetic regulation in plant in response to nitrogen-fixing bacteria association, we analyzed the sRNA regulation in maize hybrids (Zea mays – UENF 506-8) inoculated with the beneficial diazotrophic bacteria (Herbaspirillum seropedicae). Deep sequencing analysis was carried out to identify the sRNAs regulated in maize during association with diazotrophic bacteria. For this analysis, maize plants were germinated in wet paper and put in hydroponic system with Hoagland’s solution and then inoculated with H. seropedicae for seven days. Mock and inoculated plants were collected and total RNA from a pool of samples was extracted with Trizol reagent. The two sRNA libraries were sequenced by Illumina. The sequences were filtered to remove adaptors and contaminants rRNA and tRNAs, and sequences with 18-28 nt in length were selected. To identify the miRNAs present in these libraries, we used two strategies using the same website (http://srna-tools.cmp.uea.ac.uk): one to identify novel miRNAs using the maize genome (verson 2) and miRCat pipeline; and other to identify conserved miRNAs using the miRBase database (release 13.0, http://microrna.sanger.ac.uk) and miRProf pipeline. We identified 17 novel putative miRNAs candidates and mapped the precursor of these miRNAs in the maize genome. Furthermore, we identified 25 conserved miRNAs families and the differential expressions were analyzed with miRProf pipeline. The bioinformatics analysis of four up-regulated miRNAs (miR397, miR398, miR408 and miR528) in inoculated plant was validated using stem–loop RT-PCR assay. Our findings contribute to increase the knowledge of the molecular relation between plants and endophytic bacteria.
Project description:An Easy Operating Pathogen Microarray (EOPM) was designed to detect almost all known pathogens and related species based on their genomic sequences. For effective identification of pathogens from EOPM data, a statistical enrichment algorithm has been proposed and further implemented in a user-friendly interface. A microarray was designed with probes for vertebrate-infecting virus sequences in EMBL, 18S rRNA fungi and parasite sequences from EMBL, and 16S rRNA sequences of bacteria from RDP, synthesized on the Agilent platform. The array was tested using 2 color dyes on cultured microbes and on clinical samples from sick and healthy people, looking for differences in clinically ill people compared to a number of healthy "controls".
Project description:Iron-rich pelagic aggregates (iron snow) were collected directly onto silicate glass filters using an electronic water pump installed below the redoxcline. RNA was extracted and library preparation was done using the NEBNext Ultra II directional RNA library prep kit for Illumina. Data was demultiplied by GATC sequencing company and adaptor was trimmed by Trimgalore. After trimming, data was processed quality control by sickle and mRNA/rRNA sequences were sorted by SortmeRNA. mRNA sequences were blast against NCBI-non redundant protein database and the outputs were meganized in MEGAN to do functional analysis. rRNA sequences were further sorted against bacterial/archeal 16S rRNA, eukaryotic 18S rRNA and 10,000 rRNA sequences of bacterial 16S rRNA, eukaryotic 18S rRNA were subset to do taxonomy analysis.