Project description:Sequencing the metatranscriptome can provide information about the response of organisms to varying environmental conditions. We present a methodology for obtaining random whole-community mRNA from a complex microbial assemblage using Pyrosequencing. The metatranscriptome had, with minimum contamination by ribosomal RNA, significant coverage of abundant transcripts, and included significantly more potentially novel proteins than in the metagenome. Keywords: metatranscriptome, mesocosm, ocean acidification
Project description:Sequencing the metatranscriptome can provide information about the response of organisms to varying environmental conditions. We present a methodology for obtaining random whole-community mRNA from a complex microbial assemblage using Pyrosequencing. The metatranscriptome had, with minimum contamination by ribosomal RNA, significant coverage of abundant transcripts, and included significantly more potentially novel proteins than in the metagenome. Keywords: metatranscriptome, mesocosm, ocean acidification This experiment is part of a much larger experiment. We have produced 4 454 metatranscriptomic datasets and 6 454 metagenomic datasets. These were derived from 4 samples. The experiment is an ocean acidification mesocosm set up in a Norwegian Fjord in 2006. We suspended 6 bags containing 11,000 L of sea water in a Coastal Fjord and then we bubbled CO2 through three of these bags to simulate ocean acidification conditions in the year 2100. The other three bags were bubbled with air. We then induced a phytoplankton bloom in all six bags and took measurements and performed analyses of phytoplankton, bacterioplankton and physiochemical characteristics over a 22 day period. We took water samples from the peak of the phytoplankton bloom and following the decline of the phytoplankton bloom to analyses using 454 metagenomics and 454 metatranscriptomics. Day 1, High CO2 Bag and Day 1, Present Day Bag, refer to the metatranscriptomes from the peak of the bloom. Day 2, High CO2 Bag and Day 2, Present Day Bag, refer to the metatranscriptomes following the decline of the bloom. Obviously High CO2 refers to the ocean acidification mesocosm and Present Day refers to the control mesocosm. Raw data for both the metagenomic and metatranscriptomic components are available at NCBI's Short Read Archive at ftp://ftp.ncbi.nlm.nih.gov/sra/Studies/SRP000/SRP000101
Project description:More than 99% of identified prokaryotes, including many from the marine environment, cannot be cultured in the laboratory. This lack of capability restricts our knowledge of microbial genetics and community ecology. Metagenomics, the culture-independent cloning of environmental DNAs that are isolated directly from an environmental sample, has already provided a wealth of information about the uncultured microbial world. It has also facilitated the discovery of novel biocatalysts by allowing researchers to probe directly into a huge diversity of enzymes within natural microbial communities. Recent advances in these studies have led to a great interest in recruiting microbial enzymes for the development of environmentally-friendly industry. Although the metagenomics approach has many limitations, it is expected to provide not only scientific insights but also economic benefits, especially in industry. This review highlights the importance of metagenomics in mining microbial lipases, as an example, by using high-throughput techniques. In addition, we discuss challenges in the metagenomics as an important part of bioinformatics analysis in big data.
Project description:The difficulty associated with the cultivation of most microorganisms and the complexity of natural microbial assemblages, such as marine plankton or human microbiome, hinder genome reconstruction of representative taxa using cultivation or metagenomic approaches. Here we used an alternative, single cell sequencing approach to obtain high-quality genome assemblies of two uncultured, numerically significant marine microorganisms. We employed fluorescence-activated cell sorting and multiple displacement amplification to obtain hundreds of micrograms of genomic DNA from individual, uncultured cells of two marine flavobacteria from the Gulf of Maine that were phylogenetically distant from existing cultured strains. Shotgun sequencing and genome finishing yielded 1.9 Mbp in 17 contigs and 1.5 Mbp in 21 contigs for the two flavobacteria, with estimated genome recoveries of about 91% and 78%, respectively. Only 0.24% of the assembling sequences were contaminants and were removed from further analysis using rigorous quality control. In contrast to all cultured strains of marine flavobacteria, the two single cell genomes were excellent Global Ocean Sampling (GOS) metagenome fragment recruiters, demonstrating their numerical significance in the ocean. The geographic distribution of GOS recruits along the Northwest Atlantic coast coincided with ocean surface currents. Metabolic reconstruction indicated diverse potential energy sources, including biopolymer degradation, proteorhodopsin photometabolism, and hydrogen oxidation. Compared to cultured relatives, the two uncultured flavobacteria have small genome sizes, few non-coding nucleotides, and few paralogous genes, suggesting adaptations to narrow ecological niches. These features may have contributed to the abundance of the two taxa in specific regions of the ocean, and may have hindered their cultivation. We demonstrate the power of single cell DNA sequencing to generate reference genomes of uncultured taxa from a complex microbial community of marine bacterioplankton. A combination of single cell genomics and metagenomics enabled us to analyze the genome content, metabolic adaptations, and biogeography of these taxa.
Project description:A metagenomic library of sea sediment metagenome containing 245,000 recombinant clones representing ~ 2.45 Gb of sea sediment microbial DNA was constructed. Two unique arsenic resistance clones, A7 and A12, were identified by selection on sodium arsenite containing medium. Clone A7 showed a six-fold higher resistance to arsenate [As(V)], a three-fold higher resistance to arsenite [As(III)] and significantly increased resistance to antimony [Sb(III)], while clone A12 showed increased resistance only to sodium arsenite and not to the other two metalloids. The clones harbored inserts of 8.848 Kb and 6.771 Kb, respectively. Both the clones possess A + T rich nucleotide sequence with similarity to sequences from marine psychrophilic bacteria. Sequence and transposon-mutagenesis based analysis revealed the presence of a putative arsenate reductase (ArsC), a putative arsenite efflux pump (ArsB/ACR) and a putative NADPH-dependent FMN reductase (ArsH) in both the clones and also a putative transcriptional regulatory protein (ArsR) in pA7. The increased resistance of clone A7 to As(V), As(III) and Sb(III) indicates functional expression of ArsC and ArsB proteins from pA7. The absence of increased As(V) resistance in clone A12 may be due to the expression of a possible inactive ArsC, as conserved Arg60 residue in this protein was replaced by Glu60, while the absence of Sb(III) resistance may be due to the presence of an ACR3p-type arsenite pump, which is known to lack antimony transport ability.