Project description:Although N2 fixation can occur in free-living cyanobacteria, the unicellular endosymbiotic cyanobacterium Candidatus Atelocyanobacterium thalassa (UCYN-A) is considered to be a dominant N2-fixing species in marine ecosystems. Four UCYN-A sublineages are known from partial nitrogenase (nifH) gene sequences. However, few studies have investigated their habitat preferences and regulation by their respective hosts in open-ocean versus coastal environments. Here, we compared UCYN-A transcriptomes from oligotrophic open-ocean versus nutrient-rich coastal waters. UCYN-A1 metabolism was more impacted by habitat changes than UCYN-A2. However, across habitats and sublineages genes for nitrogen fixation and energy production were highly transcribed. Curiously these genes, critical to the symbiosis for the exchange of fixed nitrogen for fixed carbon, maintained the same schedule of diel expression across habitats and UCYN-A sublineages, including UCYN-A3 in the open-ocean transcriptomes. Our results undersore the importance of nitrogen fixation in UCYN-A symbioses across habitats, with consequences for community interaction and global biogeochemical cycles.
Project description:<p>Biological nitrogen fixation by free-living bacteria and rhizobial symbiosis with legumes plays a key role in sustainable crop production. Here, we study how different crop combinations influence the interaction between peanut plants and their rhizosphere microbiota via metabolite deposition and functional responses of free-living and symbiotic nitrogen-fixing bacteria. Based on a long-term (8 year) diversified cropping field experiment, we find that peanut co-cultured with maize and oilseed rape lead to specific changes in peanut rhizosphere metabolite profiles and bacterial functions and nodulation. Flavonoids and coumarins accumulate due to the activation of phenylpropanoid biosynthesis pathways in peanuts. These changes enhance the growth and nitrogen fixation activity of free-living bacterial isolates, and root nodulation by symbiotic Bradyrhizobium isolates. Peanut plant root metabolites interact with Bradyrhizobium isolates contributing to initiate nodulation. Our findings demonstrate that tailored intercropping could be used to improve soil nitrogen availability through changes in the rhizosphere microbiome and its functions.</p>
Project description:Biological nitrogen fixation (BNF) is an essential source of new nitrogen for terrestrial ecosystems. The abiotic factors regulating BNF have been extensively studied in various ecosystems and laboratory settings. Despite this, our understanding of the impact of neighbouring bacteria on N2 fixer activity remains limited. Here, we explored this question using a coculture of the free-living diazotroph Azotobacter vinelandii and the non-fixing plant growth-promoting rhizobacteria Bacillus subtilis. We assessed the interaction between the two bacteria under low N availability.
2024-10-15 | PXD056293 | Pride
Project description:Free-Living vs. Aggregate-Associated Heterotrophic Diazotrophs: Characteristics and Contribution to N2 Fixation in a Eutrophic River
Project description:This project investigates the proteomic remodeling associated with N2 fixation and NH4+ assimilation in Zymomona mobilis. Previous work has elucidated the metabolic and proteomic response of Zymomona mobilis during steady state N2 fixation. These experiments examine the proteomic profile during the dynamic shift of N2 and NH4+.