Project description:Ulcerative colitis is a chronic inflammatory disorder for which a definitive cure is still missing. This is characterized by an overwhelming inflammatory milieu in the colonic tract where a composite set of immune and non-immune cells orchestrate its pathogenesis. Over the last years, a growing body of evidence has been pinpointing gut virome dysbiosis as underlying its progression. Nonetheless, its role during the early phases of chronic inflammation is far from being fully defined. Here we show the gut virome-associated Hepatitis B virus protein X, most likely acquired after an event of zoonotic spillover, to be associated with the early stages of ulcerative colitis and to induce colonic inflammation in mice. It acts as a transcriptional regulator in epithelial cells, provoking barrier leakage and altering mucosal immunity at the level of both innate and adaptive immunity. This study paves the way to the comprehension of the aetiopathogenesis of intestinal inflammation and encourages further investigations of the virome as a trigger also in other scenarios. Moreover, it provides a brand-new standpoint that looks at the virome as a target for tailored treatments, blocking the early phases of chronic inflammation and possibly leading to better disease management.
Project description:The determinants of influenza transmission remain poorly understood. Swine influenza viruses preferentially attach to receptors found in the upper airways; however, most swine influenza viruses fail to transmit efficiently from swine to humans, and from human-to-human. The pandemic 2009 H1N1 (H1N1pdm) virus was a rare exception of a swine virus that acquired efficient transmissibility from human-to-human, and is reflected in efficient respiratory droplet transmission in ferrets. We hypothesize that virus-induced host responses in the upper airways correlate with airborne transmission in ferrets. To address this question, we used the H1N1pdm virus and swine influenza A/swine/Hong Kong/201/2010 (HK201) virus that has comparable titre in the ferret nasopharynx, but it exhibits differential transmissibility in ferrets via respiratory droplet route. We performed a transcriptomic analysis of tissues from the upper and lower respiratory tract from ferrets infected with either H1N1pdm or HK201 viruses using ferret-specific Agilent oligonucleotide arrays. We found differences in the kinetics of the innate immune response elicited by these two viruses that varied across tissues.
Project description:The gastrointestinal ecosystem is a highly complex environment with a profound influence on human health. Inflammation in the gut, linked to an altered gut microbiome has been associated with the development of multiple human conditions including type 1 diabetes (T1D). Viruses infecting the gastrointestinal tract, especially enteroviruses, are also thought to play an important role in T1D pathogenesis possibly via overlapping mechanisms. Here, we apply an integrative approach to combine comprehensive faecal virome, microbiome and metaproteome data sampled before and at the onset of islet autoimmunity in 40 children. We show strong age and antibody related effects across the datasets. Mastadenovirus infection was associated with profound functional changes in the faecal metaproteome. Multiomic factor analysis modelling revealed proteins associated with carbohydrate transport from the genus Faecalibacterium were associated with islet autoimmunity. These findings demonstrate functional remodelling of the gut microbiota accompanies both islet autoimmunity and viral infection.
2022-08-22 | PXD032997 | Pride
Project description:Raw buffalo milk macrogenomic data
Project description:Given the gut microbiota involve aging processing, we performed comparative analysis of gut bacteriophage between older and young subjects using next-generation sequencing (NGS). In our previous study, we found that the Ruminococcaceae is higher in aged subjects comparing to young one. To identify the bacteriophage targeting to the Ruminococcaceae, we also access the composition of phage in the Ruminococcaceae (ATCC, TSD-27) after incubated with human stool samples. The Lactobacillus (ATCC, LGG) targeting phage was used as the control. The virome sequencing analysis using NGS indicated that Myoviridae are high enrich in young subjects and predominate in TSD-27 targeting phage.
Project description:Cultures of primary human airway epithelial cells (HAE cells) were exposed to an MDCK equivalent MOI of 0.01 of several swine- and human-origin influenza viruses and RNA was extracted at the 12, 16, and 24 hours post infection.