Project description:the raw data for the manuscript"Rule-based omics mining reveals antimicrobial macrocyclic peptides against drug-resistant clinical isolates"
2024-04-30 | MSV000094648 | MassIVE
Project description:Genomic Analysis of Carbapenem resistant clinical isolates
| PRJNA1118183 | ENA
Project description:Genomic Analysis of CTX-M-Producing Clinical Escherichia coli Isolates from Bangladesh.
Project description:The emergence and spread of carbapenem-resistant Klebsiella pneumoniae (CR-KPN) infections have worsened the current situation worldwide. Clinically, cotrimoxazole (CTX) and amikacin (AMI) are considered to be the preferred drugs in the treatment of (CR-KPN). But for now, the extensive use of cotrimoxazole (CTX) and amikacin (AMI) During the course of treatment leads to the emergence of cotrimoxazole- and amikacin-resistant infections, which is of great clinical concern. Previous evidence has shown that bacteria with reduced metabolism tend to be resistant to antibiotics, however, the mechanism remains unclear. In the present study, proteomics was performed on the sensitive, cotrimoxazole-resistant, amikacin-resistant and cotrimoxazole/amikacin-both-resistant KPN clinical isolates, and 2266 proteins were identified in total by liquid chromatography coupled with tandem mass spectrometry (LC–MS/MS) analysis. Further bioinformatic analysis showed down-regulation of tricarboxylic acid cycle pathway and up-regulation of alcohol metabolic or glutathione metabolism processes, which may contribute to ROS clearance and cell survival, in drug-resistant isolates. Finally, combined with minimum inhibitory concentration (MIC) of Amikacin and Cotrimoxazole on different KPN isolates, we identified nine proteins contributed mostly to such an alteration and the survival of bacteria under drug pressure, which could reveal novel mechanisms or pathways involved in drug resistance. These proteins and their pathways might be used as targets for the development of novel therapeutics against antimicrobial-resistant (AMR) infections.
Project description:Comparative analysis of genome wide binding profile of Ncb2 in azole sensitive (AS, Gu4) and azole resistant (AR, Gu5) clinical isolates of Candida albicans. The goal was to study the role of Ncb2 in acquisition of drug resistance by comparing the binding profiles of Ncb2 in both the isolates.
Project description:Antimicrobial peptides (AMPs) are garnering attention as possible alternatives to antibiotics. Here, we describe the antimicrobial properties of epinecidin-1 against multi-drug resistant clinical isolates of P. aeruginosa (P. aeruginosa (R)) and P. aeruginosa from ATCC (P. aeruginosa (19660)) in vivo. The minimum inhibitory concentrations (MICs) of epinecidin-1 against P. aeruginosa (R) and P. aeruginosa (19660) were determined, and compared with those of imipenem. Epinecidin-1 was found to be highly effective at combating peritonitis infection caused by P. aeruginosa (R) or P. aeruginosa (19660) in mouse models, without inducing adverse behavioral effects, or liver or kidney toxicity. Taken together, our results indicate that epinecidin-1 enhances the survival rate of mice infected with the bacterial pathogen P. aeruginosa through both antimicrobial and immunomodulatory effects. RNA from mice treated with epinecidin-1 were individually compared to RNA from PBS control mice.
Project description:With the global increase in the use of carbapenems, several gram-negative bacteria have acquired carbapenem resistance, thereby limiting treatment options. Klebsiella pneumoniae is one of such notorious pathogen that is being widely studied to find novel resistance mechanisms and drug targets. These antibiotic-resistant clinical isolates generally harbor many genetic alterations, and identification of causal mutations will provide insights into the molecular mechanisms of antibiotic resistance. We propose a method to prioritize mutated genes responsible for antibiotic resistance, in which mutated genes that also show significant expression changes among their functionally coupled genes become more likely candidates. For network-based analyses, we developed a genome-scale co-functional network of K. pneumoniae genes, KlebNet (www.inetbio.org/klebnet). Using KlebNet, we could reconstruct functional modules for antibiotic-resistance, and virulence, and retrieved functional association between them. With complementation assays with top candidate genes, we could validate a gene for negative regulation of meropenem resistance and four genes for positive regulation of virulence in Galleria mellonella larvae. Therefore, our study demonstrated the feasibility of network-based identification of genes required for antimicrobial resistance and virulence of human pathogenic bacteria with genomic and transcriptomic profiles from antibiotic-resistant clinical isolates.
Project description:The alarming rise of antimicrobial resistance in Mycobacterium tuberculosis coupled with the shortage of new antibiotics has made tuberculosis (TB) control a global health priority. Non-steroidal anti-inflammatory drugs (NSAIDs) inhibit the growth of multi-drug resistant isolates of M. tuberculosis. Repurposing NSAIDs, with known clinical properties and safety records, offers a direct route to clinical trials. Therefore we investigated the novel mechanisms of anti-mycobacterial action of the NSAID, carprofen. Integrative molecular and microbiological approaches revealed that carprofen, a bactericidal drug, inhibited bacterial drug efflux mechanisms. In addition, carprofen restricted mycobacterial biofilm-like growth, highlighting the requirement of efflux-mediated communicative systems for the formation of biofilms. Transcriptome profiling revealed that carprofen likely acts by inhibiting respiration through the disruption of membrane potential, which may explain why spontaneous drug-resistant mutants could not be raised due to the pleiotropic nature of carprofen’s anti-tubercular action. This immunomodulatory drug has the potential to reverse TB antimicrobial resistance by inhibiting drug efflux pumps and biofilm formation, and paves a new chemotherapeutic path for tackling tuberculosis.
Project description:Oligonucleotide DNA microarrays were used as a platform to compare C. jejuni isolates from feedlot cattle and human clinical cases from Alberta. Comparative genomic hybridization (CGH) analysis was performed on 87 isolates (46 bovine, 41 human) obtained within the same geographical regions and time frame. In addition, We also performed gene association analysis to determine if any genes may be differentially distributed between human and cattle sources or between clusters dominated by either human or cattle isolates (“human enriched” vs “cattle enriched”). Keywords: Comparative Genomic Hybridization; Genomic epidemiology; Gene-association study
Project description:Comparative genomic analysis of the most important S. enterica sspI clinical isolates and respective strains from the SARB collection Keywords: other