Project description:Plant growth promoting rhizobacteria (PGPR) induce positive effects in plants, such as increased growth or reduced stress susceptibility. The mechanisms behind PGPR/plant interaction are poorly understood, as most studies have described short- term responses on plants and only a few studies have analyzed plant molecular responses under PGPR colonization. Transcriptional profiles were determined by microarray analysis (Affymetrix ATH1 Genome Array) in Arabidopsis thaliana plants inoculated with the PGPR bacterial model Burkholderia phytofirmans PsJN
Project description:ra04-07_pgpr - profiling of the pgpr induced systemic resistance (isr) - Experiment 1 : Which genes are up- or down-regulated in Arabidopsis thaliana cultivated in vitro with increased lateral root development in response to Phyllobacterium STM196 inoculation. Experiment 2 : Which genes are up- or down-regulated during the ISR triggered by a rhizobacteria, in comparison with those affected by a pathogenic interaction. Experiment 3 : which genes are specifically induced or repressed in Arabidopsis thaliana by inoculation of the soil with a PGPR vs a bacteria that has the ability to trigger nodule formation in a Legume. - Seeds were sawn on 0.8% (W/V) agar mineral medium (see below). 4 days after storage in the dark at 4degreeC, seedling were cultivated 6 days in a growth chamber (16 h daily, 20-22degreeC) and then transferred on soil inoculated or not with 107 cfu.g-1 of Bradyrhizobium strain ORS278. Three weeks later, 3 leaves per plant were infiltrated with a suspension of Pseudomonas syringae pv. tomato (2.105 cfu.ml-1) or with MgSO4 10 mM alone for control plants. Infiltrated leaves were collected 24h later. Keywords: normal vs rnai mutant comparaison,treated vs untreated comparison
Project description:ra04-07_pgpr - trancriptional response to 3 rhizobacteria - Experiment 1 : Which genes are up- or down-regulated in Arabidopsis thaliana cultivated in vitro with increased lateral root development in response to Phyllobacterium STM196 inoculation. Experiment 2 : Which genes are up- or down-regulated during the ISR triggered by a rhizobacteria, in comparison with those affected by a pathogenic interaction. Experiment 3 : which genes are specifically induced or repressed in Arabidopsis thaliana by inoculation of the soil with a PGPR vs a bacteria that has the ability to trigger nodule formation in a Legume. - Seeds of wild-type Arabidopsis thaliana (ecotype Columbia) were surface-sterilized and sawn on agar mineral medium. Four days after storage in the dark at 4degreeC, seedlings were cultivated 6 days in a growth chamber (16 h daily, 20-22degreeC) and then transferred on soil inoculated or not with 108 cfu.g-1 of Mesorhizobium loti, or 108 cfu.g-1 of Phyllobacterium STM196, or 107 cfu.g-1 of Bradyrhizobium ORS278. Keywords: treated vs untreated comparison
Project description:ra04-07_pgpr - profiling of the root architecture response to phyllobacterium - Experiment 1 : Which genes are up- or down-regulated in Arabidopsis thaliana cultivated in vitro with increased lateral root development in response to Phyllobacterium STM196 inoculation. Experiment 2 : Which genes are up- or down-regulated during the ISR triggered by a rhizobacteria, in comparison with those affected by a pathogenic interaction. Experiment 3 : which genes are specifically induced or repressed in Arabidopsis thaliana by inoculation of the soil with a PGPR vs a bacteria that has the ability to trigger nodule formation in a Legume. - Seeds of wild-type Arabidopsis thaliana (ecotype Columbia) were surface-sterilized and sawn on agar mineral medium (see below). 4 days after storage in the dark at 4degreeC, seedling were cultivated 6 days in a growth chamber (16 h daily, 20-22degreeC) and then transferred on a fresh agar mineral medium inoculated or not with Phyllobacterium STM196 (2.108 cfu/ml). 6 days later, root and leaves were collected, froze on liquid nitrogen and stored at -80degreeC. Keywords: treated vs untreated comparison
Project description:Plant growth promoting rhizobacteria (PGPR) induce positive effects in plants, such as increased growth or reduced stress susceptibility. The mechanisms behind PGPR/plant interaction are poorly understood, as most studies have described short- term responses on plants and only a few studies have analyzed plant molecular responses under PGPR colonization. Transcriptional profiles were determined by microarray analysis (Affymetrix ATH1 Genome Array) in Arabidopsis thaliana plants inoculated with the PGPR bacterial model Burkholderia phytofirmans PsJN Arabidopsis seeds were sown on square Petri dishes with half strength Murashige and Skoog medium (MS) 0.8% agar, and inoculated or not (control) with strain PsJN. To assess the effect of inactivated bacteria, an inoculum was heated at 95M-BM-0C for 20 min and then was used at the same dilution.Three biological replicates, consisting of ten plantlets of 13 days after sowing (DAS) each, for control and strain PsJN treatments, were used for global gene expression.
Project description:The aim of this study was to analyze the impact of autotetraploidy on gene expression in Arabidopsis thaliana by comparing diploid versus tetraploid transcriptomes. In particular, this included the comparison of the transcriptome of different tetraploid A. thaliana ecotypes (Col-0 vs. Ler-0). The study was extended to address further aspects. One was the comparison of the transcriptomes in subsequent generations. This intended to obtain information on the genome wide stability of autotetraploid gene expression. Another line of work compared the transcriptomes of different diploid vs. tetraploid tissues. This aimed to investigate whether particular gene groups are specifically affected during the development of A. thaliana autotetraploids. Samples 1-8: Arabidopsis thaliana Col-0 tetraploid transcriptome. Transcriptional profiling and comparison of diploid vs. tetraploid Col-0 seedlings. The experiment was carried out with pedigree of independently generated and assessed tetraploid Col-0 lines. Samples 9-12: Arabidopsis thaliana Ler-0 tetraploid transcriptome. Transcriptional profiling and comparison of diploid vs. tetraploid Ler-0 seedlings. The experiment was carried out with pedigree of independently generated and assessed tetraploid Ler-0 lines. Samples 13-24: Arabidopsis thaliana Col-0 tetraploid transcriptome. Transcriptional profiling and comparison of diploid vs. tetraploid Col-0 leaves (6th - 8th). The experiment was carried out with pedigree of independently generated and assessed tetraploid Col-0 lines. Samples 25-32: Arabidopsis thaliana Ler-0 tetraploid transcriptome. Transcriptional profiling and comparison of diploid vs. tetraploid Ler-0 leaves (6th - 8th). The experiment was carried out with pedigree of independently generated and assessed tetraploid Ler-0 lines. Samples 33-36: Arabidopsis thaliana Ler-0 tetraploid transcriptome. Transcriptional profiling and comparison of tetraploid vs. tetraploid Ler-0 seedlings from the second (F2) and third (F3) generation after induction, respectively. The experiment was carried out with pedigree of independently generated and assessed tetraploid Ler-0 lines. Samples 37-40: Arabidopsis thaliana Col-0 tetraploid transcriptome. Transcriptional profiling and comparison of tetraploid vs. tetraploid Col-0 seedlings from the second (F2) and third (F3) generation after induction, respectively. The experiment was carried out with pedigree of independently generated and assessed tetraploid Col-0 lines. Samples 41-44: Arabidopsis thaliana Col-0/Ler-0 diploid transcriptome. Transcriptional profiling and comparison of diploid Col-0 vs. diploid Ler-0 seedlings. The experiment was carried out with pedigree of esrablished lines. Samples 45-48: Arabidopsis thaliana Col-0/Ler-0 tetraploid transcriptome. Transcriptional profiling and comparison of tetraploid Col-0 vs tetraploid Ler-0 seedlings. The experiment was carried out with pedigree of independently generated and assessed tetraploid Col-0 and Ler-0 lines.
Project description:Small RNA sequences from Arabidopsis thaliana Col-0 inflorescence tissues of three biological replicates. The data were analyzed to identify non-templated nucleotides in Arabidopsis small RNAs.