Project description:Heat stress is a very complex physiological process. At present, there are some reports about physiological function and pathological changed on chicken heat stress. We use DNA microarrays to detail the global programme of gene expression underlying heat stress and identified distinct classes of differentially expressed (DE) genes during this process.
Project description:BRD4 governs pathological cardiac gene expression by binding acetylated chromatin, resulting in enhanced RNA polymerase II (Pol II) phosphorylation and transcription elongation. Here, we describe a signal-dependent mechanism for regulation of BRD4 in cardiomyocytes. BRD4 expression is suppressed by microRNA-9 (miR-9), which targets the 3’ untranslated region of the Brd4 transcript. In response to stress stimuli, miR-9 is downregulated, leading to derepression of BRD4 and enrichment of BRD4 at long-range super-enhancers (SEs) associated with pathological cardiac genes. A miR-9 mimic represses stimulus-dependent targeting of BRD4 to SEs and blunts Pol II phosphorylation at proximal transcription start sites, without affecting BRD4 binding to SEs that control constitutively expressed cardiac genes. These findings suggest that dynamic enrichment of BRD4 at SEs genome-wide serves a crucial role in the control of stress-induced cardiac gene expression, and define a miR-dependent signaling mechanism for the regulation of chromatin state and Pol II phosphorylation.
Project description:The proton channel HVCN1 is expressed in B cell malignancies at high levels but its role remains unclear. From initial experiments during which HVCN1 was downregulated in human multiple myeloma cell lines, we observed an increase in some glycolytic and TCA metabolites. We want to get a better idea if HVCN1 is playing a role in regulating energy metabolism in multiple myeloma.
Project description:The ketogenic diet has been successful in promoting weight loss among patients that have struggled with weight gain. This is due to the cellular switch in metabolism that utilizes liver-derived ketone bodies for the primary energy source rather than glucose. Fatty acid transport protein 2 (FATP2) is highly expressed in liver, small intestine, and kidney where it functions in both the transport of exogenous long chain fatty acids (LCFA) and in the activation to CoA thioesters of very long chain fatty acids (VLCFA). We have completed a multi-omic study of FATP2-null (Fatp2-/-) mice maintained on a ketogenic diet (KD) or paired control diet (CD), with and without a 24-hour fast (KD-fasted and CD-fasted) to address the impact of deleting FATP2 under high-stress conditions. Control (wt/wt) and Fatp2-/- mice were maintained on their respective diets for 4-weeks. Afterwards, half the population was sacrificed while the remaining were fasted for 24-hours prior to sacrifice. We then performed paired-end RNA-sequencing on the whole liver tissue to investigate differential gene expression. The differentially expressed genes mapped to ontologies such as the metabolism of amino acids and derivatives, fatty acid metabolism, protein localization, and components of the immune system’s complement cascade, and were supported by the proteome and histological staining.
Project description:Transcription factor-induced reprogramming of somatic cells to pluripotency is a very inefficient process, probably due to the existence of important epigenetic barriers that are imposed during differentiation and that contribute to preserve cell identity. In an effort to decipher the molecular nature of these barriers, we followed a genome-wide approach, in which we identified macro histone variants (macroH2A) as highly expressed in human somatic cells but downregulated after reprogramming to pluripotency, as well as strongly induced during differentiation. Knock down of macro histone variants in human keratinocytes increased the efficiency of reprogramming to pluripotency, while overexpression had opposite effects. Genome-wide occupancy profiles show that in human keratinocytes macroH2A.1 preferentially occupies genes that are expressed at low levels and are marked with H3K27me3, including pluripotency-related genes and bivalent developmental regulators, at which its presence prevents the regain of H3K4me2 during reprogramming, over imposing an additional layer of repression that preserves cell identity. Gemone wide occupancy of HA:macroH2A.1 in human keratinocytes
Project description:Purpose: The physiological cardiac hypertrophy is an adaptive condition that does not associate with myocyte cell death while pathological hypertrophy is a maladaptive condition associated with myocyte cell death. Alpha-2 macroglobulin (α-2M) an acute phase protein induces cardiac hypertrophy via the ERK1,2 and PI3K/Akt signaling. This study is aimed at exploring the miRNome of α-2M induced hypertrophied cardiomyocytes and to understand the role of miRNAs in determination of pathological and physiological hypertrophy. Methods: Hypertrophy was induced in H9c2 cardiomyoblasts using alpha-2 macroglobulin. The induction of hypertrophy is confirmed by microscopy and gene expression studies. Subsequently, the total RNA was isolated and small RNA sequencing was executed in Illumina HiSeq 2000. Results: Analysis of small RNA reads revealed the differential expression of a large set of miRNAs during hypertrophy. Among the differentially expressed candidates, miR-99 family (miR-99a, miR-99b and miR-100) showed significant downregulation upon α-2M treatment while isoproterenol treatment (pathological hypertrophy) upregulated their expression. The binding site for Egr1 transcription factor was identified in the promoter region of miR-99 family, and interestingly all miRNAs with Egr1 binding site proven by ChIP-Seq were downregulated during physiological hypertrophy Conclusions: The results proved Egr-1 mediated regulation of miR-99 family determines the uniqueness of pathological and physiological hypertrophy. Upregulated miR-99 expression during pathological hypertrophy suggests that it can be a valuable diagnostic marker and potential therapeutic target for cardiac hypertrophy and heart failure. Small RNA profiles of control and hypertrophied cardiomyocyte H9c2 cells were generated by deep sequencing using Illumina HiSeq 2000
Project description:Purpose: The physiological cardiac hypertrophy is an adaptive condition that does not associate with myocyte cell death while pathological hypertrophy is a maladaptive condition associated with myocyte cell death. Alpha-2 macroglobulin (α-2M) an acute phase protein induces cardiac hypertrophy via the ERK1,2 and PI3K/Akt signaling. This study is aimed at exploring the miRNome of α-2M induced hypertrophied cardiomyocytes and to understand the role of miRNAs in determination of pathological and physiological hypertrophy. Methods: Hypertrophy was induced in H9c2 cardiomyoblasts using alpha-2 macroglobulin. The induction of hypertrophy is confirmed by microscopy and gene expression studies. Subsequently, the total RNA was isolated and small RNA sequencing was executed in Illumina HiSeq 2000. Results: Analysis of small RNA reads revealed the differential expression of a large set of miRNAs during hypertrophy. Among the differentially expressed candidates, miR-99 family (miR-99a, miR-99b and miR-100) showed significant downregulation upon α-2M treatment while isoproterenol treatment (pathological hypertrophy) upregulated their expression. The binding site for Egr1 transcription factor was identified in the promoter region of miR-99 family, and interestingly all miRNAs with Egr1 binding site proven by ChIP-Seq were downregulated during physiological hypertrophy Conclusions: The results proved Egr-1 mediated regulation of miR-99 family determines the uniqueness of pathological and physiological hypertrophy. Upregulated miR-99 expression during pathological hypertrophy suggests that it can be a valuable diagnostic marker and potential therapeutic target for cardiac hypertrophy and heart failure.
Project description:Age is an independent risk factor for atrial fibrillation (AF), and curcumin can delay aging related disease through reducing oxidative stress and inflammation. However, its target in aging-related AF remains unclear. Transfer RNA-derived small RNA (tsRNA) is a novel short non-coding RNA (sncRNA), and exerts a potential regulatory function in aging. This study was to explore the therapeutic targets of curcumin in atrium of aged mice by PANDORA-seq. Aged mice (18 month) were treated with curcumin (100mg/kg). Rapid transjugular atrial pacing was performed to observe AF inducibility. SA-β-gal staining, ROS detection and qRT-PCR were used to assess the degree of aging and oxidative stress/inflammation levels. PANDORA-seq was performed to reveal the differentially expressed sncRNAs in the atrium of mice. The results showed that curcumin reduced the susceptibility AF of aged mice by improving aging-related atrial fibrosis. Compared to young mice (5 month) group, aged mice yielded 473 significantly altered tsRNA sequences, while 947 tsRNA sequences were significantly altered after treated with curcumin. Enrichment analysis revealed that the target genes were mainly related to DNA damage and protein modification. Compared with the 5mo group, the expression levels of mature-mt_tRNA-Val-TAC_CCA_end, mature-mt_tRNA-Glu-TTC_CCA_end, and mature-tRNA-Asp-GTC_CCA_end were up-regulated in the 18mo group, while the expression of mature-mt_tRNA-Thr-TGT_5_end was down-regulated. This trend was reversed in the 18mo+curcumin group. Increased cellular ROS levels, inflammation expression and senescence in aged mice atrium were improved by the down-regulation of mature-mt_tRNA-Val-TAC_CCA_end. In conclusion, our findings identified mature-mt_tRNA-Val-TAC_CCA_end participated in the mechanism of aging-related atrial fibrosis, providing new intervention target of aging-related AF.