Project description:We used wheat as rotational crop to assess the influence of continuous cropping on microbiome in Pinellia ternata rhizosphere and the remediation of rotational cropping to the impacted microbiota. Illumina high-throughput sequencing technology was utilized for this method to explore the rhizosphere microbial structure and diversity based on continuous and rotational cropping.
Project description:We explore whether a low-energy diet intervention for Metabolic dysfunction-associated steatohepatitis (MASH) improves liver disease by means of modulating the gut microbiome. 16 individuals were given a low-energy diet (880 kcal, consisting of bars, soups, and shakes) for 12 weeks, followed by a stepped re-introduction to whole for an additional 12 weeks. Stool samples were obtained at 0, 12, and 24 weeks for microbiome analysis. Fecal microbiome were measured using 16S rRNA gene sequencing. Positive control (Zymo DNA standard D6305) and negative control (PBS extraction) were included in the sequencing. We found that low-energy diet improved MASH disease without lasting alterations to the gut microbiome.
Project description:A double cropping system has been commercially adopted in subtropical regions in southern China, where there is abundant sunshine and heat resources. In this viticulture system, the first growing season normally starts as a summer cropping cycle; then, the vine is pruned and forced by hydrogen cyanamide, resulting in a second crop in January of the next year. Due to climate differences between the two growing seasons, flavonoid content and composition varies greatly. In this study, changes in the transcriptome of flavonoid-associated pathways were compared in berries grown under the double cropping system; in addition, the accumulation of flavonoid compounds was compared. Specific alterations in MYB transcription factors occurred in winter cropping berries around veraison. Then, the winter cropping cycle distinctly induced the flavonoid metabolic pathways while triggering the ripening-associated pathways. Notably, the climate conditions in winter cropping positively affected flavonoid biosynthesis, while the summer season took a major toll on anthocyanin accumulation. In addition, the three classes of flavonoid compounds responded differently to the changing climate; the anthocyanins and flavonols were promoted several fold, whereas no consistent increase was found for flavan-3-ols. Conclusively, flavonoid biosynthesis in grapes grown under a double cropping system showed seasonal or climatic-specific accumulation patterns.
Project description:Long-term experiment (150 days) of Escherichia coli MC1000 with daily transfers into fresh LB medium and under three different oxygen regimes.
2013-03-01 | GSE44614 | GEO
Project description:16sRNA in sheep twins rumen under different feed regimes